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Abstract. We report on a data fusion approach for prediction of outcome of drug-induced liver
injury (DILI) in humans from gene expression studies as provided by the CAMDA 2013 Challenge.
Our aim was to investigate if the data from all four toxicogenomics studies can be fused together
to boost prediction accuracy. We show that recently proposed matrix factorization-based fusion
provides an elegant framework for integration of CAMDA and related data sets. Our data fusion
approach yields a high cross-validated AUC of 0.819 (in vivo assays), which is above the accuracy
of standard machine learning procedures (stacked classification with feature selection). Achieved
accuracy is also a substantial improvement of the highest scores on the same data sets reported in
CAMDA 2012. Our data analysis shows that animal studies can be replaced with in vitro assays
(AUC = 0.799) and that we can predict liver injury in humans from animal data (AUC = 0.811).

1 Introduction

Molecular biology abounds with data from sequencing, expression studies, function an-
notations, studies of interactions and other. These data sources are related, and analysis
of one data set could benefit from inclusion of others. We have recently proposed a data
fusion approach [1] that can elegantly integrate heterogeneous data sources, representing
each data set in a matrix and fusing the data sets by simultaneous matrix factorization.
We here report on the fusion of 29 data sets from CAMDA Challenge and related data
repositories to predict DILI potential. We compare the accuracy of data fusion to that
of a standard multi-classifier approach where we stack four state-of-the-art classification
algorithms. We additionally investigate feature subset selection by CUR matrix decom-
position [2] applied before stacking [3]. Our principal contribution is a demonstration
that toxicogenomics studies can substantially benefit from data fusion.

2 Data fusion by Matrix Factorization

We use data fusion by matrix factorization [1], an intermediate data integration approach
that is able to fuse heterogeneous data sources. Intermediate integration is often the pre-
ferred integration strategy [4,5,6] as it embeds the structure of the data into a predictive
model and for this reason often achieves higher accuracy.

Data fusion considered 14 object types (nodes in Fig. 1, e.g., drug, GO term, or drug
type) and a collection of 29 data sources, each relating a pair of object types (arcs in
Fig. 1, e.g., gene annotations that relate genes and GO terms). In addition to FARMS-
summarized expression data sets we include data on drugs available from DrugBank3,
gene annotations from Gene Ontology4, protein-protein interactions from STRING5, and

3 http://www.drugbank.ca
4 http://www.geneontology.org
5 http://string-db.org

http://www.drugbank.ca
http://www.geneontology.org
http://string-db.org
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hematological and clinical chemistry data for each animal and array metadata infor-
mation, the latter being provided by the challenge organizers. We did not use in vivo
pathological findings in the fused model.

We represent the observations from a data source that relates two distinct objects
types i and j in a sparse relation matrix Rij (e.g., R1,13 for annotations of genes in
rat in vivo single study). A data source that provides relations between objects of the
same type i is represented by a constraint matrix Θi (e.g., Θ10,10 for DrugBank’s drug
interactions). Relation matrices Rij are simultaneously factorized under constraints by
Θi [1]. The resulting system contains factors Sij that are specific to each data source and
factors Gi that are specific to each object type, such that each relation matrix Rij is

approximated as R̂ij = GiSijG
T
j . Fusion takes place due to matrix factor sharing during

decomposition of relation matrices.
We apply data fusion to infer relations between drugs and DILI potential, respectively.

This relation, encoded in a target matrix R10,14, is observed in the context of all other
data sources. Matrix R10,14 ∈ R131×3 is a [0, 1]-matrix that is only partially observed. Its
entries indicate drugs’ degree of membership to the three DILI severity classes, which
are “No concern DILI”, “Less concern DILI” and “Most concern DILI”, respectively. We
aim to predict the unobserved entries in R10,14 by reconstructing them through matrix

factorization. The DILI severity of p-th drug is determined as arg maxi R̂10,14(p, i).

3 Multi-Classifier Approach and Feature Subset Selection by
CUR Matrix Decomposition

We use FARMS-summarized gene expression data for the four toxicogenomics studies that
were provided by the organizers of the challenge [7]. We employ CUR matrix decomposi-
tion [2] to identify a small set of information carrying genes. CUR matrix decomposition
in an unsupervised manner approximates target matrix A as A ≈ CUR, where C and R
are low-dimensional matrix factors that contain a subset of columns and rows from A, re-
spectively. The advantage of CUR decomposition over some well known low-rank matrix
decompositions such as principal component analysis (PCA) or singular value decompo-
sition (SVD) is its explicit representation in terms of a small number of actual columns
and rows of target data matrix. The CUR decomposition-selected features correspond to
original gene expression profiles instead of their linear combinations as with PCA and
SVD. We then apply several state-of-the-art classifiers to predict the DILI concern in
human from the matrix factor C obtained for each toxicogenomics study separately. We
use gradient tree boosting with multinomial deviance as a loss function to model the
three classes of DILI severity, random forests, support vector machine with polynomial
kernel. Individual predictions are ensembled through stacking with logistic regression [3].

4 Results and Discussion

The performance of proposed inference approaches was estimated through 10-fold cross-
validation. Feature subset selection for multi-classifier approach was performed on train-
ing data sets. Parameters of the classification and matrix decomposition algorithms, such
as the number of iterations and the sizes of the constituent trees in gradient tree boosting,
were estimated through internal cross-validation on the training data.

In our first experiment we considered the DILI prediction problem for each study sepa-
rately and pursued a multi-classifier approach (Table 1). Feature subset selection by CUR
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Fig. 1: Fused data sources. Nodes represent 14 object types. Arcs denote data sources that relate objects of

different type (relation matrices, Rij) or objects of the same type (constraints, Θi) for a total of 29 matrices-data

sources. Bold arc (R10,14,R14,10 = RT
10,14) represents relation between drugs and DILI potential that we try to

augment. Fused data sources include gene annotations that are encoded in {0, 1}-matrices R1,13, R2,13, R3,13

and R4,13, expression profiles (R1,5, R2,6, R3,7, R4,8), hematology, body weight and clinical chemistry data for

each rat (R5,12, R6,12, R12,5 = RT
5,12, R12,6 = RT

6,12), array metadata information such as dose level, dosage time

and sacrifice time (R5,9, R6,9, R7,9, R8,9, R9,5 = RT
5,9, R9,6 = RT

6,9, R9,7 = RT
7,9, R9,8 = RT

8,9), drug targets

(R1,10, R2,10, R3,10, R4,10), indication of medical drugs tested with arrays (R5,10, R6,10, R7,10, R8,10), structure

and categorization of drugs (R10,11, R11,10 = RT
10,11). Constraint matrices encode protein-protein interactions

(Θ1,1, Θ2,2, Θ3,3, Θ4,4), drug interactions (Θ10,10) and semantic structure of Gene Ontology graph (Θ13,13).

matrix decomposition substantially reduced the number of features. For instance and as
averaged across cross-validation folds, only about 300 features were used for training the
prediction models in human in vitro study instead of original 18,988 features included by
FARMS summarization. Solid performance of multi-classifier approach was not surpris-
ing [8,9], yet the substantial improvement of the AUC scores from CAMDA 2012 was.
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Notice that we did not reimplement the procedures from [10], so the comparison of AUC
scores is only indicative as they were obtained on different data samples chosen by cross
validation. Yet the relatively large gains in AUC by our methods do provide evidence for
improvements in prediction performance.

Notice also comparable performance of data preprocessing by CUR factorization and
PCA. As CUR performs feature selection rather than feature transformation, it could be
a preferable procedure to identify gene biomarkers.

Table 2 reports on 10-fold cross-validated accuracy for seven data fusion configurations
that considered various subsets of the complete fusion model in Figure 1. The model
inferred from all assays used an entire collection of data sources from Figure 1. Other
models considered only selected toxicogenomics studies and associated non-expression
data. For instance, fusion of in vivo assays omitted all data sets from in vitro studies
(object types 3, 4, 7, and 8).

Data fusion surpassed the accuracy of multi-classifier approach to predict DILI poten-
tial in humans (Table 2). The most accurate model was inferred by fusing in vivo assays,
which scored AUC of 0.819. It is surprising that in vivo assays, which relied on animal
model, performed better than human assays, as we aim at predicting DILI potential
in humans. However, last year’s participants Pessiot et al., 2012 [10] similarly observed
that using in vivo animal data was more informative than using in vitro data from hu-
mans. Their AUC scores obtained by linear support vector machine classifier and inferred
from separate toxicogenomics studies were substantially lower than those reported by our
fusion-based approach. Also, fusion-based model inferred from animal assays (these are
three studies, two in vivo and one in vitro study) outperformed model obtained by fusing
human assays only (one human in vitro study), where the first achieved AUC of 0.811
and the latter AUC of 0.792. One might expect that administration of drugs to animal
models would fail to identify the risk of liver injury for drugs prescribed to human due
to differences in metabolic pathways and the current lack of suitable animal models that
reproduce the human risk factors [11]. Our results do not confirm this hypothesis, al-
though differences in performance are small and further investigations seem worthwhile
pursuing.

Machine learning method human rat rat rat

in vitro in vitro in vivo single in vivo repeated

Log. reg. stack. (RF, MD GBT, LR, SVM) w. PCA 0.741 0.765 0.748 0.761

Log. reg. stack. (RF, MD GBT, LR, SVM) w. CUR 0.758 0.755 0.764 0.778

Pessiot et al., 2012 [10] 0.59 0.58 0.67 0.66

Clevert et al., 2012 [12] 0.26∗

Table 1: Predictive performance of multi-classifier approach for DILI potential prediction with and without CUR

dimensionality reduction. Reported are 10-fold cross-validated AUC scores. Acronyms: RF - random forests [13],

MD GBT - multinomial deviance gradient boosting trees [14], LR - logistic regression, SVM - support vector

machine (polynomial third degree kernel). CAMDA 2012 scores are from Pessiot et al. [10] and Clevert et al. [12]

who used different cross-validation indices and data preprocessing. ∗Clevert et al. [12] reported the error rate and

not AUC score.
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Fused data AUC

In vivo assays 0.819

All in vitro assays 0.790

Human in vitro assays 0.793

Animal in vitro assays 0.799

Animal assays 0.811

Human assays 0.792

All assays 0.810

Table 2: Predictive performance of fusing various subsets of assays for DILI potential prediction. Reported are

10-fold cross-validated AUC scores.

5 Conclusion

Data fusion allows us to simultaneously consider the available data for outcome prediction
of drug-induced liver injury. Its models can surpass accuracy of standard machine learn-
ing approaches. Our results also indicate that future prediction models should exploit
circumstantial evidence from related data sources in addition to standard toxicogenomics
data sets. We anticipate that efforts in data analysis have the promise to replace animal
studies with in vitro assays and predict the outcome of liver injuries in humans using
toxicogenomics data from animals.
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