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Abstract 

Signaling pathways constitute a valuable source of information that allows interpreting 

the way in which the cell respond to external stimulus and the aspects of the cell 

functionality affected by these. Here we explore the effect of drugs in cell signaling and 

the feasibility of using signaling to predict drug effect. A simple probabilistic model of 

23 rat KEGG signaling pathways is used to compare the impact of drugs in vitro and in 

vivo. Our results document that almost all the pathways (20 out of the 23 pathways 

modeled) were affected in one or more stimulus-response circuits in the same way both 

in cell lines and in the in vivo experiment. This effect was observed for half of the drugs 

tried. Therefore models of cell signaling can be used as predictor of in vivo activity from 

in vitro activity in a reasonable number of cases. The advantage of using such models is 

that they permit an unprecedented insight into the mechanisms of drug effect and also 

understanding the differences between the in vitro and the in vivo systems.    

Introduction 

Signaling pathways represent the way in which the combined effect of gene activity 

elicits cell-level responses by activating/deactivating specific functionalities in response 

to particular stimulus through a chain of intermediate molecules. Drugs can either act as 

external stimulus or directly interfere with the genes of the pathway, causing changes in 

the “normal” responses. Such changes can be used to understand the biological 

consequences of the effect of drug in the cell, as well as to give clues on the drug 

mechanism of action. Despite a different behavior of signaling pathways is expected 

when cell lines are compared to organs or tissues, some affected signaling mechanisms 

could be common to certain drugs and could be used to predict in vivo activity. We have 

used the KEGG (Kanehisa, et al., 2012) repository, which contain detailed information 

about pathways, to obtain the templates for the derivation of the probabilistic models.  

Methods 

If the individual probabilities of protein presence/absence of all the proteins in the 

pathway are known, a simple probabilistic model of the pathway can be used to 

calculate the probabilities for signal transmission from any receptor protein to any final 

effector protein (taking into account all the intermediate activator and/or repressor 

proteins in between). Here, we take gene expression values as proxies of gene activity 



and, consequently, presence/absence of the corresponding protein (Efroni, et al., 2007). 

We have used more than 10,000 Affymetrix microarrays downloaded from the GEO 

database (Barrett, et al., 2013) to derive the empirical distributions of presence/absence 

for each probe, that are further used to calculate the probability of presence/absence for 

the to the genes involved in the studied pathways (Efroni, et al., 2007; Sebastian-Leon, 

et al., 2013). Nodes have been treated in different ways depending on whether they were 

composed by alternative proteins (redundancy: only one of them keeps the node 

working) or complexes (all proteins are indispensable to keep the node working). This 

simplification has proven to be useful in practical terms (Sales, et al., 2012). Therefore, 

given the measurements of gene expressions in a particular experiment, the reference 

distributions can be sued to estimate the probabilities of presence/absence of each 

protein (and each node) of the pathway.  

Once such probabilities have been estimated, the probability of signal transmission 

along a stimulus-response circuit can easily be inferred from the probabilities of 

activation of all the connecting nodes that constitute the circuit (providing that inhibitor 

nodes allow signal transmission when they are deactivated). The circuits are defined by 

the 23 KEGG pathways of rat used here (see Table 1). Therefore, the stimulus-response 

circuits of any of the pathways can easily be modeled by means of a simple product of 

probabilities (using the principle of inclusion/exclusion when bi- or multi-furcating 

stretches are present) (Sebastian-Leon, et al., 2013). This provides a straightforward 

approach to estimate the probability of signal transmission from gene expression values. 

However, such probabilities of signal transmission when out of context are not 

informative. What is interesting is the comparison of such probabilities in two different 

conditions (typically cases versus controls). We apply a Wilcoxon test (Wilcoxon, 

1945) that allows detecting which stimulus-response circuits significantly change their 

probabilities of signal transmission between the compared conditions.  

Here, we compare the changes induced by a collection of 132 drugs from the TGP 

dataset from the Japanese Toxicogenomics Project (Uehara, et al., 2010) in the different 

circuits of different pathways both, in vitro and in vivo. 

The models of the pathways have recently been published (Sebastian-Leon, et al., 2013) 

and are available at: http://pathiways.babelomics.org/ 

Results 

For each drug, we carried out all the comparisons between the doses tried in vitro and in 

vivo, independently. For any of these comparisons, we studied which circuits in which 

pathways displayed a significant change in the activity induced by the drug, as well as 

the type of change experimented (activation or inhibition). Table 1 shows the pathways 

in which the drugs caused the same type of alterations in one or several stimulus-

response circuits. A total of 931 different circuits from all the pathways were affected 

by one or more drugs. Cell lines are more affected by drugs than the corresponding in 

vivo counterparts (by more than a 25% in average). However, only 207 stimulus-

response circuits, corresponding to almost all the pathways (20 out of a total of 23 



modeled) represented in Table 1 display coincident patterns of activation in response to 

several of the drugs tried. Almost half of the drugs tried (58 out of 132) caused an 

identical effect both in vitro and in vivo in at least one circuit of at least one pathway.  

 

Figure 1 shows in detail the activity of several drugs in the PPAR signaling pathway. A 

total of twelve drugs significantly trigger the activation of the lipid metabolism and the 

adipocyte differentiation both in vitro and in vivo. This functional activation is attained 

through the activation three main stimulus-response circuits (in red in the figure). The 

detail provided by the model allows understanding the ways through the drugs are 

acting in the cell, as well as detecting other valuable collateral drug effects, as side 

effects, drug resistances, etc., providing these have a significant impact in any of the 

modeled pathways.  

KEGG ID Name Drugs 

rno03320 PPAR SIGNALING PATHWAY bendazac, benzbromarone, benziodarone, 

clofibrate, fenofibrate, furosemide, gemfibrozil, 

simvastatin, sulfasalazine, WY-14643 

rno04115 p53 SIGNALING PATHWAY colchicine, disopyramide, ethionine, moxisylyte, 

nitrosodiethylamine, propylthiouracil, 

puromycin_aminonucleoside, quinidine 

rno04060 CYTOKINE-CYTOKINE RECEPTOR 

INTERACTION 

diazepam 

rno04210 APOPTOSIS hydroxyzine, nitrofurantoin 

rno04340  HEDGEHOG SIGNALING PATHWAY  

rno04514 CELL ADHESION MOLECULES caffeine, aproxen, nitrofurazone, tacrine,  
colchicine,  gentamicin 

rno04612 ANTIGEN PROCESING AND 

PRESENTATION 

flutamide, puromycin_aminonucleoside 

rno04662  B CELL RECEPTOR SIGNALING 

PATHWAY 

nimesulide, nitrofurazone,  chloramphenicol,  
colchicine,  mexiletine,  gentamicin,  hydroxyzine,  
sulpiride 

rno04916 MELANOGENESIS Doxorubicin,  isoniazid 

rno04012 ERBB SIGNALING PATHWAY hydroxyzine, nitrofurantoin,  colchicine, ethionine,  
colchicine,  caffeine 

rno04310 WNT SIGNALING PATHWAY Caffeine,  ibuprofen 

rno04370 VEGF SIGNALING PATHWAY Acetamidofluorene, cyclophosphamide, danazol, 

diazepam, ethambutol, ethinylestradiol, ibuprofen,  
cyclosporine_A, diazepam,  ajmaline,  
ethinylestradiol,  ethambutol, nitrofurantoin,  
nitrofurantoin 

rno04530  TIGHT JUNCTION caffeine, cisplatin, naproxen, sulindac,  ethionine, 

gentamicin,  monocrotaline, 

puromycin_aminonucleoside 

rno04630 JAK-STAT SIGNALING PATHWAY diclofenac, disopyramide, furosemide, ibuprofen, 

sulindac 

rno04664  Fc EPSILON RI SIGNALING PATHWAY colchicine, ethionine, gentamicin, penicillamine, 

valproic_acid 

rno04920 ADIPOCYTOKINE SIGNALING 

PATHWAY 

diclofenac, naphthyl_isothiocyanate, naproxen,  
colchicine,  

rno04020 CALCIUM SIGNALING PATHWAY ethionine, hydroxyzine,  caffeine 

rno04330 NOTCH SIGNALING PATHWAY Methimazole,  naproxen 

rno04512 ECM-RECEPTOR INTERACTION nifedipine 

rno04540 GAP JUNCTION carbon_tetrachloride 

rno04660 T CELL RECEPTOR SIGNALING 

PATHWAY 

colchicine, ethionine, gentamicin, penicillamine, 

valproic_acid,  caffeine, disopyramide, naproxen,  
sulindac,  naphthyl_isothiocyanate,  hydroxyzine,  
coumarin 

rno04912 GnRH SIGNALING PATHWAY disopyramide, naproxen,  iproniazid 



 
Figure 1. Rat pathway PPAR (rno03320) with red arrows indicating activation of signaling circuits by 

different drugs. 1) Circuit activated by: benzbromarone, clofibrate, fenofibrate, naproxen, WY-14643, 

omeprazole; 2) circuit activated by: benziodarone, sulfasalazine; 3) circuit activated by: bendazac, 

benzbromarone, fenofibrate, gemfibrozil, simvastatin, WY-14643. The effect of the drugs is an activation 

of the lipid metabolism and the adipocyte differentiation. 

 

Discussion 

Cell lines have extensively been used for initial in vitro testing of drugs. However, its 

validity as models of in vivo systems is questionable. Recent studies demonstrate that 

the global pattern of gene expression of cell lines is completely different to any other 

cell type, either healthy or diseased (Lukk, et al., 2010).  However, this quantitative 

observation does not provide any information about the extent at which cell lines still 

retain similar functionalities of the cell type from which they have been derived from. 

Here we have used a simple probabilistic model that transforms gene expression levels 

into probabilities of signal transmission across signaling pathways, from receptor nodes, 

which receive the stimulus, to the effector nodes that trigger the corresponding 

response. In this way, gene expression data, of often difficult interpretation, are 

transformed into meaningful functional information regarding changes in the different 

pathway responses triggered by particular stimulus.  

Our observations document a different behavior of cell lines with respect to their in vivo 

counterparts. However, such differences are not as radical as the behaviors described for 

the global gene expression (Lukk, et al., 2010) and only affects to about a 25% of the 



signaling circuits in the average. This indicates that, despite the disparity in global gene 

expression, the global behaviors are, probably, not so dissimilar. 

Using pathways to assess drug responses have a number of limitations. Firstly, there are 

drugs (half of the drugs tested here) that will not affect to the set signaling pathways 

modeled and therefore their effects will remain undetectable. In other cases, extensive 

responses, mainly observed in vitro, mask the induction or repression of common 

circuits that might be useful to predict drug activity.  

Despite the described limitations, our results suggest that the use of models of pathways 

can offer an interesting alternative to other “black box” methods for drug activity 

prediction. More detailed modeling of cell activity, including metabolic pathways and 

other aspects such as regulation, protein interaction, etc., will probably increase the 

predictive accuracy offering, at the same time, valuable information on the drug action 

mechanisms. 
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