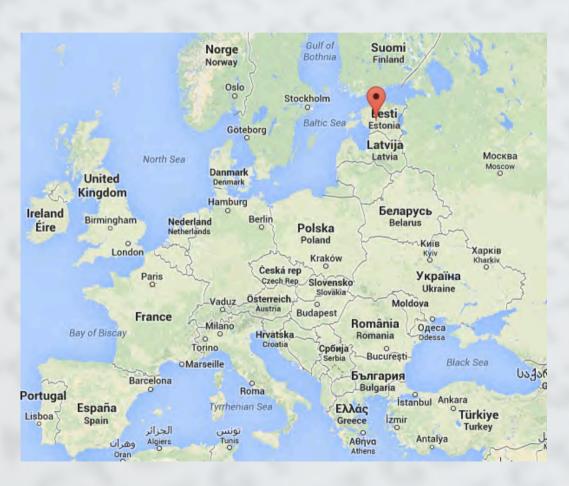
Learning from differential expression

Japanese Toxicogenomic Project

Hendrik Luuk, PhD

Dept. of Physiology University of Tartu Estonia



Outline

- Personal background
- Japanese Toxicogenomic Project
- Analytical objective
- Methods
- Results
- Discussion

University of Tartu

Personal background

- neurosciences PhD (University of Tartu, 2009)
- Post-doc 2009-2012 (BBH @ Copenhagen)

Distribution of Wfs1 Protein in the Central
Nervous System of the Mouse and Its
Relation to Clinical Symptoms of the
Wolfram Syndrome

HENDRIK LUUK, 18 SULEV KOKS, 12 MARIO PLAAS, 34 JENS HANNIBAL, 56
JENS F. REHFELD, 5 AND EERO VASAR1

Current focus

- Molecular mechanisms of therapeutic hypothermia
- Using omics-data to gain mechanistic insights

Published online 27 February 2014

Nucleic Acids Research, 2014, Vol. 42, No. 8 e72 doi:10.1093/nar/gku158

Estimating differential expression from multiple indicators

Sten Ilmjärv^{1,2}, Christian Ansgar Hundahl^{1,3,4}, Riin Reimets^{1,3}, Margus Niitsoo⁵, Raivo Kolde^{2,5}, Jaak Vilo^{2,5}, Eero Vasar^{1,3} and Hendrik Luuk^{1,3,*}

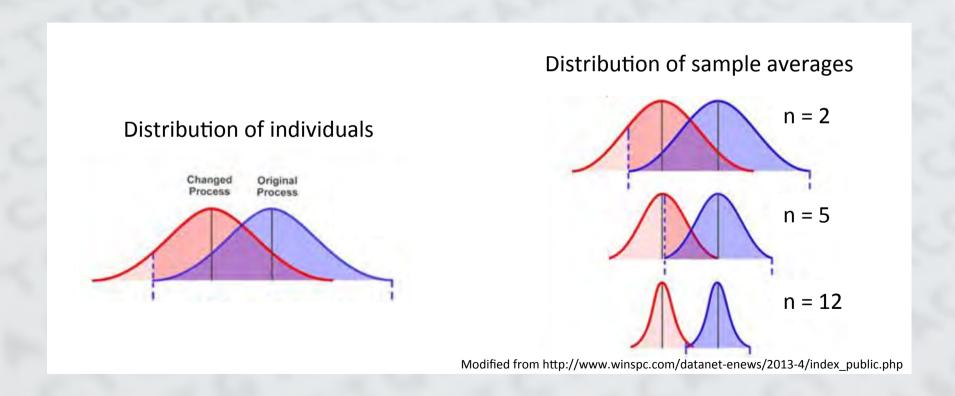
Japanese Toxicogenomic Project

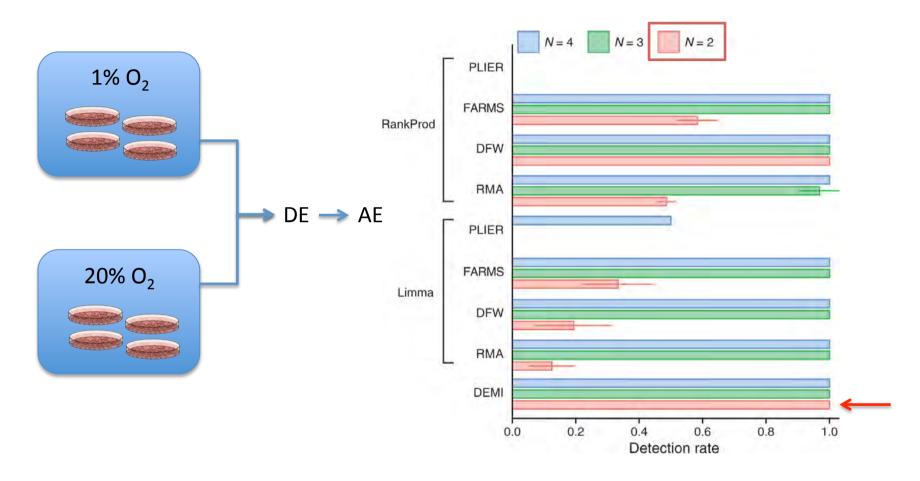
	Human (primary hepatocytes)	Rat (primary hepatocytes)	Rat (in vivo, single administration)	Rat (in vivo, repeated administration)
Drugs	119	131	131	131
Time points	2	3	4	4
Doses	2	3	3	3
Replicates	2	2	3	3

Japanese Toxicogenomic Project

DILI concern	No. of compounds			
high	41			
medium	51			
nontoxic	8			
NA	31			
Total	131			

Analytical objective


predict DILI potential from in vitro data


 use differential expression (DE) significance values as features

suggest optimal treatment designs

Methodological considerations

Can we rely on DE given 2 replicates?

- DE differential expression
- AE functional annotation enrichment
- 'cellular response to hypoxia' (GO:0071456)
- 'glycolysis' (GO:0006096)

Toy example of DEMI algorithm

 target-specific probes: the ratio of differentially expressed probes is 0.6 (9 out of 15)

		Sample A	Sample B							
	A1	A2	A3	B1	B2	В3	P _{H0} (H1: A <b)< th=""><th>Sig?</th><th>P_{H0}(H1: A>B)</th><th>Sig?</th></b)<>	Sig?	P _{H0} (H1: A>B)	Sig?
probe1	65.22	86.83	54.44	32.98	20.58	7.23	1	*	0.05	*
probe2	52.56	51.05	69.14	51.36	33.36	49.29	0.95	*	0.1	*
probe3	89.08	79.54	82.64	48.05	31.31	35.37	1	*	0.05	*
probe4	69.89	52.76	43.46	56.88	42.97	26.37	0.9	*	0.2	*
probe5	55.24	60.13	78.06	13.74	58.95	51.37	0.95	*	0.1	*
probe6	55.19	64.25	71.02	45.08	43.12	24.52	1	*	0.05	*
probe7	78.74	54.86	70.79	50.01	23.56	9.83	1	*	0.05	*
probe8	59.80	49.00	65.52	27.50	42.84	32.73	1	*	0.05	*
probe9	39.12	68.67	74.74	13.46	33.44	21.85	1	*	0.05	*
probe10	62.38	66.24	39.32	44.45	24.89	7.35	0.95	*	0.1	*
probe11	56.86	56.30	61.76	19.32	4.48	46.94	1	*	0.05	*
probe12	63.23	58.10	53.91	57.07	18.19	29.25	0.95	*	0.1	*
probe13	40.97	59.80	79.76	97.36	26.37	56.28	0.65	*	0.5	*
probe14	111.45	81.71	65.14	32.41	38.04	47.96	1	*	0.05	*
probe15	65.11	64.04	70.98	47.76	43.32	15.77	1	*	0.05	*
							Ratio	0		0.6

Toy example of DEMI algorithm

 off-target probes (the background): the ratio of differentially expressed probes is around 0.05 (expected when there is no systematic difference between A and B)

		Sample A		Sample B]				
	A1	A2	A3	B1	B2	В3	P _{H0} (H1: A <b)< th=""><th>Sig?</th><th>P_{H0}(H1: A>B)</th><th>Sig?</th></b)<>	Sig?	P _{H0} (H1: A>B)	Sig?
probe1	66.74	53.14	54.84	55.18	42.45	47.84	0.9	*	0.2	*
probe2	35.94	59.95	46.56	51.26	63.87	65.81	0.1	*	0.95	*
probe3	26.35	56.41	54.89	57.93	56.66	34.10	0.2	*	0.9	*
probe4	87.84	54.04	44.22	50.96	38.60	70.50	0.8	*	0.35	*
probe5	55.63	52.17	56.86	70.28	34.03	35.13	0.8	*	0.35	*
probe6	75.81	51.80	66.25	45.52	63.09	39.66	0.95	*	0.1	*
probe7	34.98	51.21	50.61	40.97	33.54	63.84	0.65	*	0.5	*
probe8	62.62	53.43	59.59	34.08	45.23	37.63	1	*	0.05	*
probe9	86.47	88.12	50.31	44.60	53.09	43.84	0.95	*	0.1	*
probe10	66.57	55.94	54.54	36.99	47.68	50.44	1	*	0.05	*
probe996	46.28	31.91	36.94	44.68	47.73	62.60	0.1	*	0.95	*
probe997	63.09	75.89	45.91	64.15	42.37	62.86	0.8	*	0.35	*
probe998	27.49	50.75	38.21	35.78	13.33	50.33	0.8	*	0.35	*
probe999	61.14	66.20	34.56	50.81	12.44	50.47	0.9	*	0.2	*
probe1000	46.10	27.95	33.43	36.14	33.11	67.12	0.35	*	0.8	*
						Ratio	0.049		0.052	

Toy example of DEMI algorithm

	H1: A < B	H1: A > B
Target (ratio)	0	0.6
Background (ratio)	0.049	0.052
P _{H0} (H1: ratio_T > ratio_B)	1	2.44E-09

- Q: What is the H_0 -probability of observing a ratio of target-specific DE probes >= 0.6 when the background ratio is 0.052?
- A: 2.44E-09 (hypergeometric probability distribution)

Arrays

- Rat230_2
 - 157,540 probes
 - hits mapping to 14,195 rat genes
- HG-U133_Plus_2
 - 395,023 probes
 - hits mapping to 24,809 human genes

Performance evaluation

- 10-times 4-fold CV

- Matthews correlation coefficient

$$MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP) \times (TP + FN) \times (TN + FP) \times (TN + FN)}}$$

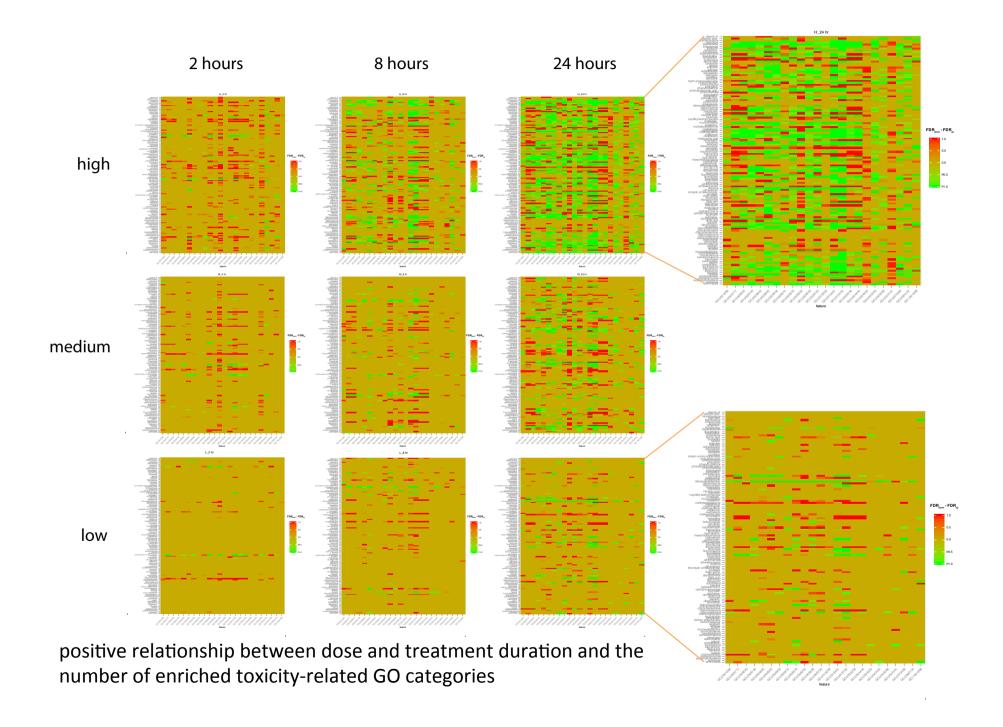
- Classifier
 - 3-layered neural network (50:10:1)
- Feature (-1..0..1): FDR_{H1: A<B} FDR_{H1: A>B}
 - -1 expression of target X is lower in A
 - 0 expression of target X is similar in A and B
 - 1 expression of target X is higher in A

Feature space

- #dose * #timepoint * #gene
- e.g. 3 * 3 * 14,195 = 127,755 features

Filtering

 keep 5% of features with highest variance from each treatment-reference pair

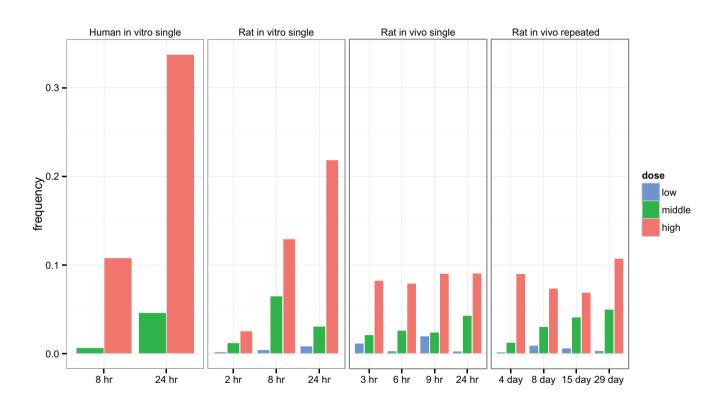

Selection

- recursive feature elimination
- 50 features

Results

 Proof-of-concept: is treatment effect on differential expression more potent at higher doses and longer treatment periods?

 Dose and treatment duration correlate with the no. of enriched toxicity-related GO categories



Toxicity-related categories in Gene Ontology

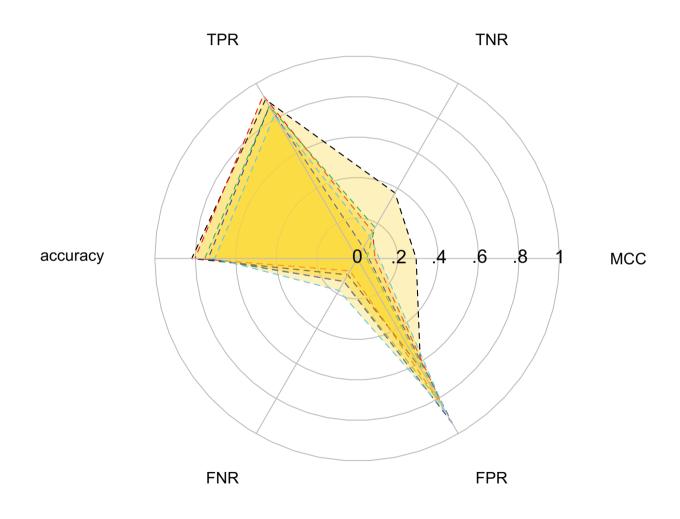
accession	name
GO:0001666	response to hypoxia
GO:0005777	peroxisome
GO:0006635	fatty acid beta-oxidation
GO:0006749	glutathione metabolic process
GO:0006805	xenobiotic metabolic process
GO:0006955	immune response
GO:0006956	complement activation
GO:0006974	response to DNA damage stimulus
GO:0006979	response to oxidative stress
GO:0008202	steroid metabolic process
GO:0009636	response to toxic substance
GO:0009725	response to hormone stimulus
GO:0016209	antioxidant activity
GO:0016491	oxidoreductase activity
GO:0019752	carboxylic acid metabolic process
GO:0030258	lipid modification
GO:0034440	lipid oxidation
GO:0034620	cellular response to unfolded protein
GO:0042440	pigment metabolic process
GO:0043068	positive regulation of programmed cell death
GO:0043161	proteasomal ubiquitin-dependent protein catabolic process
GO:0070469	respiratory chain
GO:0080134	regulation of response to stress
GO:1901988	negative regulation of cell cycle phase transition

based on conceptual relevance and variance of enrichment significance in JTGP data

Frequency of treatments among RFE-selected features

 The more frequent the treatment, the more informative were the features for distinguishing nontoxic compounds from compounds with high DILI potential based on RFE

Results


 Differential expression from low dose and short treatment period is less informative than higher doses and longer periods

Results

Classification performance

	Tra	ining	Validation	
	mean 95% ci		mean	95% ci
Human in vitro single	0.936	0.006	0.2914	0.0355
Human in vitro single (shuffled)	0.904	0.007	0.0474	0.0272
Rat in vitro single	0.984	0.004	0.0881	0.0292
Rat in vivo single	0.912	0.018	-0.0685	0.0172
Rat in vivo repeated	0.771	0.038	-0.0593	0.0135

- --- Human in vitro single
- --- Human in vitro single (shuffled)
- Rat in vitro singleRat in vivo single
- --- Rat in vivo repeated

Discussion

• DE appears to be informative w.r.t. DILI

distinguishing responses to nontoxic and toxic agents non-trivial

 classification performance higher in simpler system (presumably less biological and technical var)

Discussion

 Low dose and short treatment period are less informative than higher doses and longer periods

- Human arrays yield more gene-level features
 - suggesting the use of human cell lines for in vitro studies

Acknowledgements

- Sten Ilmjärv DEMI R package
- Xpressomics
- BIIT group (Jaak Vilo & co.)
- Estonian research foundation (ETF9099)