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The past decades drug induced liver injury (DILI) is the main cause of drugs to fail 
during clinical trials or to be withdrawn from the market (Chen et al. 2011). 
Approximately 40% of DILI cases are not detected in preclinical studies based on 
conventional indicators in in vivo rodent studies (Zhang et al. 2012). Therefore, 
alternative methods for predicting the DILI potential in humans are needed and 
toxicogenomics-based approaches have been considered. 
Recently, we developed an in vitro transcriptomics-based method in the human 
hepatic cell line HepG2 for predicting in vivo genotoxicity, which showed 89% 
accuracy, thereby clearly outperforming the standard in vitro test battery 
(Magkoufopoulou et al. 2012). For the CAMDA challenge an adapted version of this 
in vitro method was used to develop an in vitro classification model for predicting DILI 
in humans. 
The development of the in vitro classification model for DILI in human consisted of 3 
steps: 

1. selecting drugs from the three DILI potential groups (i.e. “no DILI”, “less DILI” 
and “most DILI”) for the training and validation sets; 

2. establishing gene signatures between the different DILI potential groups of 
the training set using a leave-one-out t-test or ANOVA; 

3. using these gene signatures to train and validate the prediction model in PAM 
(prediction analysis for microarrays) (Tibshirani et al. 2002). 

 
Selection of drugs 
From each DILI potential group, i.e. “no DILI” (ND), “less DILI” (LD) and “most DILI” 
(MD), drugs were selected based on the in vivo clinical chemistry measurements of 
alkaline phosphatase (ALP), aspartate aminoptansferase (AST), alanine 
aminotransferase (ALT), lactate dehydrogenase (LDH) and Y-glutamyltranspeptidase 
(GTP) from rats with a daily repeated treatment. In particular, 20 MD drugs were 
selected that showed elevated levels for four or five of the measurements. Six ND 
drugs that showed decreased or unchanged levels were selected. For 35 LD drugs 
two or three of the measurements showed elevated levels. Dose and time were not 
taken into consideration in the selection.  
 
The selected drugs were used in different settings resulting in four training sets: 

- all selected drugs; MD, LD and ND or total DILI (D) and ND (61 drugs) 
- drugs from MD and ND (26 drugs) 
- drugs from LD and ND (41 drugs) 
- drugs from MD and LD (55 drugs) 

 
The distribution of drugs over the DILI groups for the training and validation set is 
summarized in Table 1. 



Table 1. Distribution of drugs over the DILI groups for the training and validation set. 
 training set validation set total 
MD 20 21 41 
LD 35 13 48 
ND 6 2 8 
total 61 36 97 
 
 
Gene signatures 
Microarray data from human primary hepatocytes exposed to high doses for 24 hours 
were used to establish gene signatures for each training set of drugs. The expression 
data were re-annotated to the MBNI Custom CDF-files and RMA normalized using 
the web tool arrayanalysis.org (Eijssen et al. 2013). 
Genes with significantly different expression values (p<0.01) between the different 
DILI groups for each training set were selected from the expression data based on a 
series of statistical tests (ANOVA with three groups and t-test with two groups). For 
each test the two replicates of one of the drugs were removed (leave-one-out 
procedure). The significant genes that were present in all tests (the intersection of all 
lists) were selected for training the prediction model as signature. The resulting five 
gene signatures lists contained 31 to 141 genes as indicated in Table 2. 
 
Training and validation of prediction models 
PAM analysis (Tibshirani et al. 2002) was conducted for each of the signature lists for 
class prediction (threshold: 0). Misclassification errors (ME) were calculated for each 
prediction model and were highest (0.25) for ANOVA MD-LD-ND. The other four 
models had a ME <0.1. 
Per prediction model the accuracy for each DILI group was calculated as indicated in 
Table 2. The accuracy within the training set is >90% for all prediction models except 
ANOVA MD-LD-ND (accuracy 67%-90%). This model also shows lowest accuracy 
for the validation (<62%). The other four models, MD-ND, LD-ND, MD-LD and D-ND, 
had a total accuracy for the validation of 87%, 80%, 50% and 89%, respectively. 
The MD-ND and LD-ND models were further examined by testing the LD and MD 
drugs, respectively. This resulted for the LD drugs that 85% were predicted as MD 
and for the MD drugs that 95% were predicted as LD. This is also in line with the 
results (accuracy 89%) of the D-ND model. These findings indicate that both MD-ND 
and LD-ND models can be used for the prediction of DILI. In addition, the gene 
signature list from the MD-ND, LD-ND and D-ND models share 36 genes (Figure 1). 
These genes were examined for GO processes in DAVID (Huang da et al. 2009) and 
were mainly involved in cell cycle, cell growth & proliferation and signal transduction 
related processes. 



Table 2. Accuracy for training and validation sets for each prediction model. The 
number of signature genes and misclassification errors (ME) are indicated. 
ANOVA MD-LD-ND (105 genes; ME 0.25) 
 training validation 
MD 90% 33% 
LD 88% 62% 
ND 67% 0% 
tot 87% 42% 
   
t-test MD-ND (83 genes; ME 0.038) 
 training validation 
MD 95% 95% 
ND 100% 0% 
tot 97% 87% 
   
t-test LD-ND (79 genes; ME 0.024) 
 training validation 
LD 97% 92% 
ND 100% 0% 
tot 98% 80% 
   
t-test MD-LD (31 genes; ME 0.091) 
 training validation 
MD 100% 33% 
LD 91% 77% 
tot 95% 50% 
   
t-test D-ND (141 genes; ME 0.049) 
 training validation 
D 95% 94% 
ND 100% 0% 
tot 95% 89% 

 

 

Figure 1. Comparison of the t-test based 
gene signatures (i.e. number of genes) 
for the different DILI group combinations. 

 
 



Conclusions 
The results of the in vitro human transcriptomics based models are very promising 
with up to 89% correct prediction for DILI potential. However, it should be noted that 
the two ND drugs in all validation sets are wrongly predicted and that improvement is 
definitely needed for distinguishing MD drugs from LD drugs. 
 
Further analyses will be performed in which the following aspects will be considered: 

- inclusion of time and dose relationships and/or additional clinical chemical 
measurement in the selection of drugs for the training set; 

- increasing the number of ND drugs from other data repositories; 
- performing analysis on transcriptomics data from other time and dose levels; 
- enhancing the biological interpretation of gene signature lists. 
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