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1. Introduction  We provide a partial answer to the important question in Toxicogenomics

whether in-vivo microarray expression data based on animal studies can be replaced by in-

vitro data. We consider the TGP dataset which contains over 21,000 arrays for rats treated

with mainly human drugs and profiled using the Affymetrix RAE230_2.0 GeneChip®. The

main target organ profiled is liver. In a previous study, Uehara et al. (2010) identified the

genes commonly up-regulated both  and  after treatment with three differentin vivo in vitro

drugs clofibrate, WY-14643 and gemfibrozil. This study was one of the first to create an in

vivo in vitro–  bridge for the validation of a genomic biomarker with those three compounds. In

this analysis, we try to provide a comprehensive view of the –  bridging across allin vivo in vitro

the genes (probe sets) for all the 131 drugs provided in the challenge data. Moreover, our

approach is not only to observe the similarities in gene expressions of individual genes but to

identify the similarities of the network connectivity of all the similar genes across all the

chemicals. Methodologically, we consider this question from a statistical perspective and apply

a significance test to examine if there is a difference between the genomic networks for the

two different types ( / ) after accounting for different dosages of the drugs, andin vivo in vitro

sacrifice times of the rats. In order to construct the networks of genes and then finding the

differences/similarities of the networks for the two types we use the approach similar to the

framework for differential network analysis described in our earlier work in Gill et al. (2010).

Construction of the networks for each type of data is based on a connectivity score measuring

the association between each pair of genes. We apply a connectivity score constructed using a

partial least squares (PLS) method that captures the predictability of each gene's expression

from a pairing gene after adjusting for other genes and additional covariables (such as dosage)

and thus extending our earlier approach to network and differential network analysis (Pihur et

al., 2008; Gill et al., 2010; Gill et al., 2012).

 In order to study the expression pattern and the network structures, important data

preprocessing is required to account for type, dose, and sacrifice time effects. There are

substantial differences between the expression values of the MAS5 preprocessed data from the

in vivo in vitro and  samples and any naive attempt (such as a gene by gene -test) might find>
that all genes are significantly differentially expressed in the two types. We build in the

additional preprocessing in our linear model (ANOVA) for log-gene expressions. Similarly,

these effects are included in our model for the computation of the PLS scores for the network

analysis. These are detailed in the next section.

2. Data  We analyze part of the challenge dataset from the Japanese Toxicogenomics Project

and compare the MAS5 preprocessed data from the “single dose study  experimentin vivo

using Sparague-Dawley rats” with the “  study using hepatocytes from Sparague-in vitro

Dawley rats” for 131 drugs. The  dataset for each drug has microarray expressionin vivo
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values of 31099 genes for 48 rats at four different dose concentrations (control, low, middle,

and high) and four different sampling times (3, 6, 9, and 24 hours) with three observations at

each combination of the levels for these factors. The in-vitro dataset for each drug has

microarray expression values of the same genes for 24 rats at four dose concentrations with

the same labels and three different sampling times (2, 8, and 24 hours) with two observations

at each combination of the levels. The possibility of using the FARM preprocessed data was

also considered, but many of the drugs have many genes with expression value 0 for all

observations which precludes the use of regression or even correlation methods since there is

no variation in the value of these variables.

3. Methods First, we used a nested ANOVA model to assess the effects of  ( /TYPE in vivo in

vitro DOSE SAC), drug dose ( ) , and sacrifice time ( ) on the expression levels of 31099 genes

for each drug. Specifically, for each drug the mean expression value for the 3th observation for

the th gene is modeled as1

.31 31 31œ � Ð ‡ ‡ ÑTYPE TYPE SAC DOSE .

Before fitting the ANOVA model we take the logarithm of the centered expression levels; the

logarithm of the expression values are centered with respect to all genes of the given type. For

each drug, the p-values for are computed for each gene under the assumption that theTYPE 

expression values follow a normal distribution with homogeneous error variance. We use

these preliminary ANOVA analysis to determine the genes for which the expression are not

significantly different for two different types (  vs. ) at a pairwise type 1 errorin vivo in vitro

rate of 0.05.  Summarizing the results for all the drugs we find there are 473 genes for which

the  effect is not significant for at least 80% of the drugs. In other words, the expressionTYPE

profiles of this common set of genes appear to be similar for many of the drugs. Thus, these

473 genes can be taken as common bridging genes between  and  studies acrossin vivo in vitro

a great majority of the drugs. However, as the genes do not work independently we want to

construct the network of those genes and check their differential behavior across two types.

 The tests described in this section are based on connectivity scores which measures=35

the association between the th and th genes in a network. Our earlier methods (Gill et al.,3 5
2010) for differential network connectivity are modified to allow for additional covariates. We

estimate the coefficients for these additional covariates at the same time that the coefficients

used to compute the connectivity scores are obtained.  Let  be the centered and scaled -B 83

dimensional expression vector for the th gene. 3 The method of computing the PLS scores that

is described in Pihur et al. (2008) uses separate PLS models error for eachB œ , B � ß3 34 44Á3
�

gene . However, in the present context, adjustments for additional effects such as the dose3
levels are needed; thus we create additional covariate vectors  and fit a set of linearD ß ÞÞÞß D" 7

models of the form error  PLS regression is used to estimateB œ + D � , B � Þ3 35 5 34 4
5
5œ" 4Á3

� �
the coefficients  based on the design matrix formed by+ ß ÞÞÞß + ß , ß ÞÞÞß , ß , ß ÞÞÞß ,3" 37 3" 3ß3�" 3ß3�" 3:

the covariates in the PLS model. The PLS scores are computed based on the estimates

, ß ÞÞÞß , ß , ÞÞÞß ,3" 3ß3�" 3ß3�" 3:, . The details of the method for computing the PLS regression

estimates of the regression coefficients and their conversion to PLS scores are omitted in this

extended abstract; these were along the same lines as Pihur et al. (2008). A symmetrized

estimate of regression coefficient  is taken as the PLS association score , , � , ÑÎ#s s
34 34 43= œ Ð35 .
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 Once the connectivity scores are computed for each network, a permutation test is

performed to test for differential connectivity of the class of all genes or the test for a single

gene.  Let  and  denotes the connectivity scores between genes  and  for networks 1= = 3 535 35
Ð"Ñ Ð#Ñ

and 2, respectively. The test statistic for the class of all genes Y  with cardinality  is0

? œ HÐ= ß = Ñ
"

0Ð0 � "Ñ
�

3Á4−

Ð"Ñ Ð#Ñ
35 35

Y

(1)

and the test statistic for a single gene  is1

.Ð1Ñ œ
"

: � "
HÐ= ß = Ñß�

3Á1

Ð"Ñ Ð#Ñ
31 31 (2)

where  computes the distance between the connectivity scores.  We have worked with theH
P HÐ= ß = Ñ œ l= �= P" #

Ð"Ñ Ð#Ñ Ð"Ñ Ð#Ñ-distance | rather than the more commonly used -distance

leading to a more robust analysis. The permutation test is performed by randomly assigning

the labels to each observation in the data set formed by combining the observations from both

networks.

4. Results  For each of the 131 drugs, tests for differential connectivity of the networks on the

set of all 473 non-differentially expressed genes (1) were performed using 1000 permutations

based on the  distance function and the PLS connectivity scores.  No significant differencesP"

in the overall connectivity scores of the networks of this set of 473 genes were found for 77 of

the 131 drugs at a 5% significance level. These drugs are listed in Table 1.

           acarbose                disopyramide                 nimesulide
 acetamidofluorene                  disulfiram        nitrosodiethylamine

     acetaminophen                 doxorubicin                 papaverine

     acetazolamide                   enalapril              penicillamine

            adapin erythromycin ethylsuccinate                 phenacetin

     amitriptyline                  ethambutol              phenobarbital

          bendazac            ethinylestradiol     phenylanthranilic acid

      benziodarone                 ethionamide           propylthiouracil

   bromoethylamine                   etoposide  puromycin aminonucleoside

           bucetin                  famotidine                  quinidine

         captopril                 fenofibrate                simvastatin

       carboplatin                fluphenazine                   sulindac

       cephalothin                   flutamide                  sulpiride

   chloramphenicol                  gentamicin                  tamoxifen

     chlormadinone                griseofulvin                tannic acid

     chlormezanone                 hydroxyzine                terbinafine

  chlorpheniramine                  imipramine               tetracycline

    chlorpromazine                   labetalol               theophylline

    chlorpropamide                   lomustine               thioridazine

     ciprofloxacin                  lornoxicam                ticlopidine

      clomipramine              mefenamic acid                  tiopronin

        colchicine                   meloxicam                tolbutamide

    cyclosporine A                   metformin                triamterene

           danazol          methyltestosterone                  triazolam

        dantrolene                  mexiletine              trimethadione

               diltiazem                  nifedipine

Table 1: Drugs with similar connectivity scores in the two networks.
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 Even among the 54 drugs for which the set of all genes are significantly different in

terms of overall network connectivities, there are many genes that are not significantly

different in terms of individual connectivity scores in the two networks at a 5% level. Tests for

the significance difference of the connectivity score of each individual gene within the network

(2) were performed for the 54 drugs, and there were 35 genes that were not differentially

connected for at least 70% of the drugs. These genes are shown in Table 2.

GENE       prop. GENE       prop. GENE       prop. GENE       prop. GENE       prop.

1385656_at 0.833 1397371_at 0.759 1395446_at 0.741 1381550_at 0.722 1392859_at 0.704

1395874_at 0.815 1396604_at 0.759 1375063_at 0.741 1370626_at 0.722 1388033_at 0.704

1378788_at 0.796 1392389_at 0.759 1396731_at 0.722 1398741_at 0.704 1385031_at 0.704

1396340_at 0.778 1391493_at 0.759 1385655_at 0.722 1398675_at 0.704 1383272_at 0.704

1393711_at 0.778 1368887_at 0.759 1385589_at 0.722 1397850_at 0.704 1383195_at 0.704

1391313_at 0.778 1368854_at 0.759 1384683_at 0.722 1397720_at 0.704 1381502_at 0.704

1398707_at 0.759 1397339_at 0.741 1384061_at 0.722 1395490_at 0.704 1377391_at 0.704

Table 2: Genes not differentially expressed for at least 70% of the remaining 54 drugs. The respective

gene names (probe set IDs) and proportion of drugs with similar connectivity scores for that gene in the

in vivo in vitro and  networks.

 In order to characterize the 473 genes which have shown no significant difference

between the  and  types with more than 80% of the drugs we used functionalin vivo in vitro

annotation tool DAVID (Huang et al., 2009a; 2009b). Results of that analysis for the top five

functional clusters out of the 473 genes are given in Table 3. Most of the genes in the first

functional cluster are involved in neuron development, neuron differentiation, neuron

projection morphogenesis  and cell morphogenesis activities. The genes in the second most

important cluster are involved with proteins in cell-cell junctions of multi-cellular species and

also most of them are associated with some synaptic activities. The third most important

functional cluster of the genes are associated with epidermal growth factor (EGF) proteins.

Cluster Enrichment % of 

Score drugs

1 4.05 87

2 3.08 92

3 2.20 90

4 1.49 92

5 1.48 95

Table 3: Tests of differential connectivity for

the top 5 clusters obtained from the DAVID

Functional Annotation Tool. The last column

shows the percentages of drugs for which the

corresponding sub-networks were not

significantly different.

Figure 1:  and  networks forIn vivo in vitro

cluster 4 and the drug phenylbutazone.  Edges

are displayed for gene pairs with connectivity

scores (rescaled so that the largest score for the

network is 1 in magnitude) greater than 0.5 in

magnitude.

Next, we reconstructed the networks separately for each functional cluster. These networks

had fewer significant differences between the  and  types than the overallin vivo in vitro
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networks.  As seen in the Table 3, the difference between the  and  networks arein vivo in vitro

not statistically significant for at least 87% of the drugs among these top five clusters.

 We also annotated 35 genes for each of which the individual network connectivity

score between the  and  types remained unchanged in spite of havingin vivo in vitro

significantly different total gene set network connectivity scores under the treatment of 54

drugs. With DAVID annotation tool we figured that all these 35 genes are in one functional

cluster and they are associated with cellular macromolecular complex assembly.

 Lastly, we wanted to illustrate how these sub-networks behave for a given drug.

Figure 1 illustrates the constructed and  networks for the genes in cluster 4 forin vivo in vitro

phenylbutazone, a non-steroidal anti-inflammatory drug (NSAID). For these networks, the

test for differential connectivity is not significant (p-value is 0.42).  All edges in the in vivo

network also appear in the  network, and only 4 edges in the  network do notin vitro in vitro

appear in the  network.in vivo

5. Conclusion  A comprehensive view of the  -  bridge of the genes using thein vivo in vitro

rat microarray TGP study under all the drugs is undertaken. We not only provide the similarity

of individual gene expression pattern but also that of the association networks under in vivo

and  experiments. The systems are scrutinized in terms of overall network connectivityin vitro

and also in terms of individual gene connectivity. We use PLS based association scores

adjusted for sacrifice time and dosage followed by a permutation based statistical test with

those scores. Since we are trying to identify genes that are not different, a conservative

approach in this context will be not to apply a multiple testing p-value correction unlike typical

gene expression studies where the goal is to identify genes that are differentially expressed

and/or connected under two biological conditions. It is interesting to observe that, similar to

Uehara et al. (2010) who studied three of the drugs, none of the bridging genes that we found

are involved with cell proliferation and apoptosis.

 A potential limitation of our study is that our findings are based on a specific type of

statistical model. In the future we plan to undertake additional investigation where networks

are constructed by fitting other types of predictive models such as lasso (Tibshirani, 1996) and

elastic net (Zou and Hastie, 2005) and the results are compared.

 The findings must be interpreted carefully. First of all, we have highlighted the genes

which were not significantly different. However it does not quite imply that  and in vivo in

vitro studies are completely interchangeable since there are genes that show differential

expression and network profiles in the two networks. Furthermore, lack of statistical

significance does not necessarily imply that the objects under comparison are indeed equal.
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