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SCENARIO

Tumors evolve from benign to malignant lesions by acquiring a series of mutations over time

Studies based on individual gene/mutation recurrence have identified about 140 genes containing
intragenic mutations initiating tumorigenesis

Most of tumors have only one or two driver gene mutations, but tumor development and progression
require multiple sequential genetic alterations.

Cancer genomes exhibit extensive mutational heterogeneity among the tumors of different patients, is
probably related to the differences somatic mutations within tumors

(Vogelstein et al., 2013)



SCENARIO

|dentification of mutational cancer driver genes

Tumors evolve from benign to malignant lesions by acquiring a series of mutations over time

Studies based on individual gene/mutation recurrence have identified about 140 genes containing
intragenic mutations initiating tumorigenesis

Most of tumors have only one or two driver gene mutations, but tumor development and progression
require multiple sequential genetic alterations.

Cancer genomes exhibit extensive mutational heterogeneity among the tumors of different patients, is
probably related to the differences somatic mutations within tumors

(Vogelstein et al., 2013)

This heterogeneity is clearly underestimated in the current driver versus

passenger model.




THE CELL AS A SYSTEM
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Diseases can be understood as failures of functional disorders show higher expression
modules profiling similarity for their transcripts

(Oti & Brunner. Clinical genetics, 2007) (Goh et al. PNAS, 2007)



THE CELL AS A SYSTEM

The modular nature of genetic diseases

A modular view of disease genes would help the identification process of additional
disease genes for multifactorial diseases



THE CELL AS A SYSTEM

The modular nature of genetic diseases

A modular view of disease genes would help the identification process of additional
disease genes for multifactorial diseases

Would the study of healthy genomes help us to improve

also the process?




HUMAN GENOMES

Mutational load

Recent human genomic projects have revealed
the existence of an unexpectedly high amount
of deleterious variability in apparently
normal, healthy individuals.

FDR < 5%

- 3-24

Homozygous

Missense substitutions predicted to be highly damaging
Disease-causing mutations (HGMD)

(Xue et al. Am J Hum Genet. 2012)



HUMAN GENOMES

Mutational load

Recent human genomic projects have revealed
the existence of an unexpectedly high amount
of deleterious variability in apparently
normal, healthy individuals.

Important implications for the clinical

interpretation of human genome-—
sequencing data

FDR < 5%

Heterozygous Homozygous

Missense substitutions predicted to be highly damaging
Disease-causing mutations (HGMD)

(Xue et al. Am J Hum Genet. 2012)



HUMAN GENOMES

Mechanisms for the maintenance of deleterious variants
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Mechanisms for the maintenance of deleterious variants
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THE CELL AS A SYSTEM

Protein interactome
Levels of organization
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THE CELL AS A SYSTEM
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Error and attack tolerance

of complex networks
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extremely inhomogeneous connectivity distribution
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networks to buffer a phenotype in the face of
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brief communications

Lethality and centrdity in protein networks
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HYPOTHESIS
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Luz Garcia-Alonso et al., 2014 (Under revision)



DATA PROCESSING

13 from the 1000 Genomes Proj
- European (TSI, FIN, GBR & CEU)
- Asian (CHB, CHS & JPT)
- American (MXL, PUR & CLM)
- African (YRI, LWK & ASW)
(Durbin et al, 2010)

1 newly sequenced from Spain

1 population of paired samples of 41
Chronic Lymphocytic Leukemia
(CLL) patients

(Quesada et al, 2012)

Luz Garcia-Alonso et al., 2014 (Under revision)



DATA PROCESSING

Variants

selection

Variants were annontated using
VARIANT software. The variants
were classified as potentially
delterious as follows:

Variant type Filter
Stop gain, loss and Conserved
splicing

disrrupting sites

Nonsynonymous Conserved +
SIFT / Polyphen

Luz Garcia-Alonso et al., 2014 (Under revision)



DATA PROCESSING

Variants

selection

Variants were annontated using
VARIANT software. The variants
were classified as potentially
delterious as follows:

Variant type Filter
Stop gain, loss and Conserved
splicing

disrrupting sites

Nonsynonymous Conserved +
SIFT / Polyphen

COMPUTATIONAL
VALIDATION

In silico modeling of the mutations
in the protein using its previously
solved crystal structure
Luz Garcia-Alonso et al., 2014 (Under revision)



DATA PROCESSING

Variants

selection

Damaging

Variants were annontated using
VARIANT software. The variants
were classified as potentially
delterious as follows:

Variant type Filter
Stop galr},'loss and Conserved AFGABIYS
splicing

disrrupting sites

Nonsynonymous Conserved +
SIFT / Polyphen

COMPUTATIONAL
VALIDATION Tolerated

In silico modeling of the mutations
in the protein using its previously
solved crystal structure

Luz Garcia-Alonso et al., 2014 (Under revision)



DATA PROCESSING

Variants

selection

N | nteractome Nr—

mapping

The model of the human
interactome was built using data on
binary protein-protein interactions
from BioGRID, IntAct and MINT
databases.

To avoid false positives only
interactions detected by at least
two different detection methods
were used.

Luz Garcia-Alonso et al., 2014 (Under revision)



RESULTS

Deleterious variants in proteins of the interactome: Population overview
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Proteins affected by potentially deleterious variants that configure the human interactome among all the populations analyzed

Luz Garcia-Alonso et al., 2014 (Under revision)



OBJECTIVE

Compare the topological role of proteins affected by deleterious variants
observed in normal population, in monogenic diseases and in cancer patients

Luz Garcia-Alonso et al., 2014 (Under revision)



OBJECTIVE

Properties describing the relevance of the

protein for the network integrity

- the direct number of partners

- the betweenness (measure of the extent Less relevant
to which a protein lies on the paths
between others)

- the closeness centrality (a measure of
centrality in the interactome)

More relevant

Luz Garcia-Alonso et al., 2014 (Under revision)



RESULTS

Proteins affected by deleterious variants observed in normal population, in
monogenic diseases and in cancer patients have different topological roles
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Without deleterious variants (nonDel) CLL somatic deleterious variants in driver genes (drivers)

Luz Garcia-Alonso et al., 2014 (Under revision)



RESULTS

Proteins affected by deleterious variants observed in normal population, in
monogenic diseases and in cancer patients have different topological roles
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OBJECTIVE

Effect of deleterious variants observed in normal individuals
over the interactome structure

Luz Garcia-Alonso et al., 2014 (Under revision)
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Effect of deleterious variants observed in normal individuals
over the interactome structure
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OBJECTIVE

Effect of deleterious variants observed in normal individuals
over the interactome structure

Variants
selection

A=

Real individuals

homozygote . brotein lost from
deleterious variants = the system

Luz Garcia-Alonso et al., 2014 (Under revision)



OBJECTIVE

Effect of deleterious variants observed in normal individuals
over the interactome structure

Real individuals ;““.‘f‘ ~

Global estructural parameters that describe
the interconnectedness and integrity the
interactomes:

e NV 1 the number of connections
el = ) / 8 2 the average length of shortest paths

’/1'7_ ‘ [\ 7 X 3 the number of components
homozygote . brotein lost from
deleterious variants = the system

Luz Garcia-Alonso et al., 2014 (Under revision)



OBJECTIVE

Effect of deleterious variants observed in normal individuals
over the interactome structure

Global estructural parameters that describe
the interconnectedness and integrity the
interactomes:
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(uniform probability) Al i [ 8 2 the average length of shortest paths
2 </ [\ X 3 the number of components
homozygote . brotein lost from
deleterious variants = the system

Luz Garcia-Alonso et al., 2014 (Under revision)



OBJECTIVE

Effect of deleterious variants observed in normal individuals
over the interactome structure
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RESULTS
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OBJECTIVE

Deleterious variants distribution across the interactome modules

Luz Garcia-Alonso et al., 2014 (Under revision)



OBJECTIVE

Deleterious variants distribution across the interactome modules

Modular structure of the
interactome
(by using the walktrap/a'lg’orithm)
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RESULTS

Deleterious variants observed in normal individuals follow a characteristic

pattern across interactome
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RESULTS

Deleterious variants observed in normal individuals follow a characteristic
pattern across interactome modules
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CONCLUSION

Severe Gene
recessive | Mechanisms for R ey
disease alleles the maintenance
of deleterious
variants

CELLULAR
SYSTEM AS A

Late onset

henotypes
P YP BUFFER

The deleterious character of a variant NOT ONLY depends on the damage
that causes to the protein BUT ultimately is a system’s property



SCENARIO

Tumors evolve from benign to malignant lesions by acquiring a series of mutations over time

Studies based on individual gene/mutation recurrence have identified about 140 genes containing
intragenic mutations driving, initiating tumorigenesis

Most of tumors have only one or two driver gene mutations, but tumor development and progression
require multiple sequential genetic alterations.

Cancer genomes exhibit extensive mutational heterogeneity among the tumors of different patients, is
probably related to the differences somatic mutations within tumors

(Vogelstein et al., 2013)

This heterogeneity is underestimated in the current driver versus passenger model.

An alternative is to examine the somatic mutations in the context of the protein
interactome



DATA PROCESSING
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DATA PROCESSING

Cancer
genome

somatic
variants

i
;

CLUST bias

Variants

selection

Search for somatic variants under
positive selection during the
development of cancer
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DATA PROCESSING

Cancer
o - genome

somatic
variants

Variants

selection

Interactome

mapping

The model of the human
interactome was built using data on
binary protein-protein interactions
from BioGRID, IntAct and MINT
databases.

To avoid false positives only
interactions detected by at least
two different detection methods
were used.

UPDATE April 2014



RESULTS

Cancer-specific mutations in the PAN-CANCER

Cancer types
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RESULTS

Population versus cancer-specific mutations
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OBJECTIVE

Zoom in into the interactome modules concentrating cancer-specific
mutations



OBJECTIVE

Zoom in into the interactome modules concentrating cancer-specific
mutations

Variants
selection

Cancer types
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RESULTS

Zoom in into the interactome modules concentrating cancer-specific
mutations

93 / 532 modules identified
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RESULTS

Zoom in into the interactome modules concentrating cancer-specific

mutations

Distribution of the recurrence of the affected proteins
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RESULTS

Zoom in into the interactome modules concentrating cancer-specific

mutations

93 / 532 modules identified
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Cooperativity

RESULTS

Zoom in into the interactome modules concentrating cancer-specific
mutations

We calculated whether the observed distribution of the recurrency
correlates with an exponential or a linear pattern

multigenicity score

SO0 T T AT T ST T T LT T e e e
§2ooo// Exponential < . Linear like g
. ~N g g
E [ like shape N shape £
£1000" &)
0 LR UL L
-1
Q
: W

LT LT T R P EY EER I R FO L L E P EE T R TR R R R DL PR R LI

174
454
281
42
130
304
28
144
&7
65
58
35
@5
10



Cooperativity

Known

RESULTS

Zoom in into the interactome modules concentrating cancer-specific
mutations

We calculated whether the observed distribution of the recurrency
correlates with an exponential or a linear pattern

multigenicity score
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Temporal component of the multigenicity
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Temporal component of the multigenicity
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OBJECTIVE

Temporal component of the multigenicity
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OBJECTIVE

Temporal component of the multigenicity
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RESULTS

Temporal component of the multigenicity
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RESULTS

Temporal component of the multigenicity
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RESULTS

An example: The receptor for the glutamate G-protein coupled recepor
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ANTICANCER RESEARCH 37: 3181-3192 (2011)
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CONCLUSIONS

In healthy individuals, the deleterious character of a variant NOT ONLY depends
on the damage that causes to the protein BUT ultimately is a system’s property

In cancer patients, it is known that the cancer initiation requires a driver

However, driver/modulator genes for cancer progression are not as clearly
identifiable

Here, using a syetems oriented approach, we have identified driver/helper
modules within the protein interactome related to the tumor pathologic spread
and the cancer progression
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Pathogenic: contributes mechanistically to disease, but is not necessarily fully penetrant
(i.e., may not be sufficient in isolation to cause disease).

Implicated: possesses evidence consistent with a pathogenic role, with a defined level of
confidence.

Associated: significantly enriched in disease cases compared to matched controls.
Damaging: alters the normal levels or biochemical function of a gene or gene product.

Deleterious: reduces the reproductive fitness of carriers, and would thus be targeted by
purifying natural selection.

D. G. MacArthur et al., 2014



RESULTS

Deleterious variants observed in normal individuals tend to occur at the
periphery of the interactome
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RESULTS

(Kim et al. PNAS, 2007)

6
2] o
4
E 5 o
J °
= e o
Q
5 $ e * CBetweenness
g oo b 2 * Centrality
= (x 10%
=3 ° 437
3 ' e o
-
5 ‘ o ® %
g2 o e °
g l o Ve & 271
o
'2 1 ° °
2 g o
@ °
& &
0 D@D 00 O
10" 10° 10° 10"
Betweenness Centrality p<<0.01
Genes with  Genes with
dN/dS>1 dN/dS<=1
a P = 0.00757 b P =0.0124 (4 P = 0.00341
100
2 5.5.5756-07 1
2 £
8 2 £
£ : 2
£ 404 $1ooo< 35550@-07-
2 Q
by % @
3 S 3 )
5 ‘_—°) 5525071 | '
“ 10
a " 5.500-07 1
<1 >1 <1 >1 <1 >1
dN/dS dN/dS dN/dS

Luz Garcia-Alonso et al., 2014 (Under revision)



RESULTS

Damagin
RP2 ol

Arg251Gly

In silico modeling of the
mutations in the protein
using its previously solved
crystal structure

Molecular models of the human RP2 (a) and LXN (b) proteins and detailed view of the altered amino acids (Arg251Gly and Arg48Lys,
respectively)

Luz Garcia-Alonso et al., 2014 (Under revision)



