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Objectives

@ What is a sparse coding?

@ What are some common sparse coding models and what are their
fields of application?

@ What is the role of assumptions in the data generation process?

@ How can domain knowledge be incorporated in order to build an
appropriate model?
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Sparse coding
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Given a large set of input patterns, sparse coding attempt to
automatically find a small number of representative patterns which
reproduce the original input patterns.
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Sparse coding and linear generative models

@ Some sources 'drive’ the model and produce an output distribution
which should best match the observed data distribution

@ Observations x are random variables whose distribution depends
on model parameters 0

@ Nice advantages of generative models are:

e they select models using sound model selection techniques such as
maximum likelihood or maximum a posterior,

e signal-to-noise ratios can be computed,

e they can be compared with each other via the likelihood or posterior,

e they produce a global model to explain all data.
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Conclusions

Some applications

Factor analysis for
@ quantitative gene expression analysis
e Factor Analysis for Robust Microarray Summarization (FARMS)
@ discovering copy number variations in array data
e copy number FARMS (cn.FARMS)
@ identifying bicluster in a data matrix
e Factor Analysis for Bicluster Acquisition (FABIA)
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Facts and assumptions

@ Gene measured b »
different probes ’ [—n : 'um -1—[]
S e

@ Goal: summarize probe
intensities to an
expression value

@ Noise-free probes are
correlated

@ Replicate probe
intensities are Gaussian
distributed
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The probe level data
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FARMS: The idea
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Factor analysis

P
X=Az + € :Z?\; Z,-T + €
i=1

linear generative model

@ x € R" are the observations

@ z € RP are independent .4 (0,1) Gaussian factor
@ € is independent .4 (0,¥) Gaussian noise

@ x is Gaussian with

P(x)=[P(z)P(x|z)dx = A4 (0,AN"+V)

where A € R"*P is the factor loading matrix,

and the noise covariance matrix ¥ € RP*P is diagonal
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MA-plot MAS5.0 vs. FA
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The MA plot shows log fold change as a function of mean log expression level.
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Facts and assumptions Il

@ Gene measured by
different probes

@ Goal: summarize probe
intensities to an
expression value

@ Noise-free probes are
positively correlated

e Variable probe
qualities

e High quality probes
are linear dependent

@ Replicate probe
intensities are Gaussian
distributed
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Higher mRNA concentration — larger intensities
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FARMS: Bayes framework

Posterior
pAY [{x}) o p({x}|A¥) p(A)

Prior knowledge Rectified Gaussian

@ Positive A ensure positive
probe correlation

@ Most genes show no or
small signal (large signals
are of interest in a study)
Aj = max{y;,0} with
Yj~ N (u?\) 0—7\)
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Biclustering

cn.FARMS

Motivation

FARMS: EM updates

E-step:
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MA-plot FA vs. FARMS
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The MA plot shows log fold change as a function of mean log expression level.
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FARMS: Filtering by signal variance

e
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FARMS: z-posterior

Rectified Factor Networks and Dropout

Variance of z | x
Model
x =ANz+ €
and Gaussian z-prior .4 (0,1) results in the z-posterior p(z | x):
z|x ~ JV(Hz|x> O-ilx)
W = ()7 WA (1 + ATW*l}\)_l
2

o2, = (1+ ATw—lx)fl
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FARMS: The /NI call

The variance of z is decomposed into a signal and a noise part:

1 N N
1 = Var(z) = N'ZJ-EZHX: " Z(uzllxl Z,lX)
1= i=1
N

1 N
Z b = L~ N;”iilx;

N
1 —
2 _ 2 _ Tw—1
o2, =1— ) 2 = (1+ 2w
i=1

Gi‘x is called the "Informative/NonlInformative (I/NI) call" and is one

minus the signal variance. We see that large A (going with low noise ¥)
leads to low variance of z | x which means a precise conditional z.
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FARMS: Independent | /NI calls filtering

Independent filtering increases detection
power for high-throughput experiments

Richard Bourgon?, Robert Gentleman®, and Wolfgang Huber*'

*European Bioinformatics Institute, Cambridge CB10 15D, United Kingdom; *Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080-4990; and
“European Molecular Biology Laboratory, 69117 Heidelberg, Germany

‘ Edited by Stephen E. Fienberg, Carnegie Mellon University, Pittsburgh, PA, and approved March 22, 2010 (received for review December 3, 2009)
—a

@ For permutation invariant test statistics and for the t-test statistic T
(only for Gaussian z-prior), the I/NI call filter applied to null
hypotheses is independent of the statistic

@ This guarantees type | error rate control if first filtering by 1/NI calls,
then using these statistics, and finally applying correction for
multiple testing.

@ http://www.bioinf.jku.at/software/cnfarms/proof _ini.pdf


http://www.bioinf.jku.at/software/cnfarms/proof_ini.pdf
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Motivation

FARMS: I/NI calls distribution

GSE6119

var(zlx)

Bimodal distribution
o Enforced by the parameter
prior
@ Modes clearly separated

(insensitive for filtering
threshold)

@ Works for unbalanced data
(few samples contain a signal)
in contrast to variance filtering
(Bourgon et al. (2010))

@ Works for few genes with a
signal



A pipeline for gene expression analysis
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Receiver Operator Characteristics (ROC)

Affycomp Il / GoldenSpike Benchmark (AUC - area under the curve):

INTENSITY FARMS RMA GCRMA MAS 5.0 MBEI
Low 0.94 0.51 0.62 0.07 0.21
HGUI33 MeD 0.99 091 0.94 0.00 0.43
HiGH 1.00 0.64 0.59 0.00 0.16
MEAN 0.95 0.60 0.69 0.05 0.26
Low 0.91 0.57 0.45 0.09 -
HGUgs MEeD 1.00 091 091 0.00 -
HicH 0.98 0.96 0.92 0.00 -
MEAN 0.93 0.65 0.57 0.06 =
GOLDENSPIKE 0.85 0.76 0.78 0.28 0.39

Computational costs for processing 60 arrays
| FARMS | RMA | MAS50 |  MBE

COMPUTATIONAL TIME [3] \ 92 | 384 | 851 | 591



Motivation cn.FARMS Biclustering Rectified Factor Networks and Dropout Conclusions

Results /NI call

@ Leads on average to 84 (£1.5)% exclusion rate

e Applied on 30 real life studies
e A/P calls excluded only 33 (+1)%

@ Validation was carried out on spiked-in data:

Exclusion rate on spiked-in data sets:

INFORMATIVE | NON-INFORMATIVE | EXCLUSION RATE UIEmEEED UETECTED
SPIKED-INS | PSEUDO SPIKED-INS
HGU133A 81 22219 99.63% 42/42 28/28*
HGU95_V2 56 12570 99.56% 14/14 55
Hu. GENE 1.0 ST 40 19,753 99.80% 15/15%%* -

*McGee et al. 2006; **Wolfinger and Chu 2002; Cope et al. 2004; ***|ong spiked-in fragments
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Copy number variants

Normal

Deletion [[AT | FET]  tnserion [[ATHBNITDCT]
v

———
Si tal
Inversion [ BN TAT] dle.ill'ilce:ﬁ:“ II I III I I

Copy number I
variation

v
[ BN | SN BN [N (e

@ are deletions, duplications, inversions or inserations of chromosomal
segments

@ are a major source of variation between individual humans
@ are an underlying factor in human evolution and in many diseases

@ form at a faster rate than other types of mutation



Motivation cn.FARMS

Rare CNV events

Sparse data

Biclustering
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CNV data is sparse with an kurtosis larger than 30 — change the model
assumption to a Laplacian distributed hidden variable z.

Gauss vs. Laplace

ssian

Close up Gauss vs. Laplace
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Laplacian cn.FARMS

Data likelihood

p(HAY) = jp({xﬂz,x,\m plz) dz
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Laplacian cn.FARMS

Data likelihood

p(HAY) = jp({xﬂz,x,‘m plz) dz

Problem

@ The likelihood is analytically intractable for the non-Gaussian
prior
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Laplacian cn.FARMS

Data likelihood

p(HAY) = Jp({xﬂz,x,% plz) dz

Problem

@ The likelihood is analytically intractable for the non-Gaussian
prior

Solution
@ Variational EM approach

@ Based on a local Gaussian approximation to the mode
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Benchmark data sets

@ 30 male and 30 female CEU founders

o Classification task: distinguish males from females by their copy
number on the X chromosome

@ Evaluation on:

e Single-locus / multi-loci classification (window mode)
e Multi-loci summarization with

@ cn.FARMS
@ Median locus for dChip and CRMA _v2
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ROC-Curve (SNP 6.0 arrays)
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True positive rate (TPR) = TP/(TP+FN)

False positive rate (FPR)

FP/(FP+TN)
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AFFYMETRIX MAPPING250K_NSP AFFYMETRIX SNP 6.0

Loci CRITERIA | cn.FARMS | CRMA_v2 dChip cn.FARMS | CRMA v2 dChip
AUC 0.9852 0.9820 0.9819 0.9838 0.9807 0.9721

1 FP 8472 9106 9018 56145 68593 77438
P-VALUE - 1.8e-65 3.1e-26 - Te-1160 1e-6049

AUC 0.9983 0.9974 0.9969 0.9983 0.9963 0.9894

2 FP 1375 1449 1611 9777 11705 18039
P-VALUE - 2.7e-4 2.5e-12 - 1e-317 1e-3713

AUC 0.9998 0.9995 0.9992 0.9998 0.9990 0.9953

3 FP 240 366 440 1573 3462 6625
P-VALUE - 2.6e-38 7.2e-58 - 1e-896 1e-3455

AUC values at the sex classification task for 59 HapMap CEU founders
based on the X chromosome copy numbers:
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CNV detection benchmark

@ "The International HapMap Project” phase 2 data set with
Affymetrix SNP 6.0 arrays
e Goal is to identify true rare CNV regions with a low FDR

e "“True CNV regions” are those regions which were detected and
verified by different bio-technologies

@ NimbleGen tiling arrays, Agilent CGH arrays, lllumina Infinium
genotyping (Human660W)

e 2,515 true CNV regions as reference
o CNV calling criteria:

e I/NI call for cn.FARMS
e Variance of the raw copy numbers on the samples for dChip and
CRMA_v2
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CNV detection plot
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CNV detection on HapMap (multi-loci 3)

Chromosome 8

Whole genome

o o
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Precision / Recall

Recall = TP/(TP+FN)
Precision = TP/(TP+FP) =1 - FDR
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CNV detection on HapMap (multi-loci 5)

Chromosome 8

Whole genome
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ICGC copy number data sets

o Glioblastoma multiforme data sets

e 167 Agilent 415K CGH arrays from Harvard
e 262 Agilent 244A CGH arrays from Harvard
e 461 Agilent 244A CGH arrays from MSKCC
o 533 Affymetrix SNP 6.0 arrays from Broad

e 432 Illumina HumanHap 550 from Stanford

@ CN data for SNP 6.0 and HumanHap 550 were not available
@ 167 matched arrays HMS 415K and MSKCC 244A remain
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legrraia

legratic

legratia

raw data (Chromosome 1)

MSK Agilient 244K TCGA-08.0155

Pusiicn [ME]

HMS Agilient 415K TCGA-06-0155

Posiicn 18]
HMS-MSK combined TCGA-06-0155

Puiicn 18]
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raw TCGA-06.0155
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Biclustering applications

Definition: Biclustering simultaneously organizes a data matrix into
subsets of rows and columns in which the entities of each row subset are
similar to each other on the column subset and vice versa.

o Gene expression = columns tissues, rows genes

e compounds that trigger the same pathway
o tightly co-expressed gene sets in subgroups of cancer, e.g. patients
with bad treatment outcome

@ Bioassays = columns compounds, rows bioassay activity
e compounds that are active on similar targets

@ Structural fingerprints = columns compounds, rows chemical
fingerprints

e compounds that share a chemical substructure
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FABIA: The model |
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FABIA: The model Il

P
X=Az + € :Z?\; z,-T + €
i=1

x are the observations

@ A is the matrix of factor loadings

z=(z1,...,2p) " is the factor matrix
@ p number of biclusters

@ A; € R is the sparse prototype vector of the i-th bicluster

z; € R! is the sparse vector of factors of the i-th bicluster
e ¢ € R™! is independent additive noise .4 (0, ¥)-distributed
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FABIA: Bayes framework

Loading prior
@ Sparseness on the loadings

@ Laplace prior
o p(A;)) = (\/AE) 17, e V2l
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FABIA: Bayes framework

Loading prior Factor prior
@ Sparseness on the loadings @ Sparseness on the factor
@ Laplace prior @ Laplace prior

e p(A;) = (\%)nn'le e~ V2l o p(z)= (\/Aﬁ)p P e—V2zil
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FABIA: Bayes framework

Loading prior Factor prior

@ Sparseness on the loadings @ Sparseness on the factor

@ Laplace prior @ Laplace prior

o p()\’) _ (%>nH7:1 ef\fz‘)\jﬂ ° P(Z) — (\/Aﬁ)p ?:1 e—\/§|2i|
Problem

Laplace prior on factors leads to intractable likelihood:
pxINY¥) = [p(x|z,A\¥) p(z) dz

Solution: Prior on factors is replaced by maximum of a Gaussian function
family = variational approach

p(z) =~ argénax p(z|&)
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FABIA: Variational EM updates

E-step:
B(zlx) = ATY A+ 571 "AT ¥ x; and
E(z 2l Ix) = AT Y PN + Z7Y) 7 + BE(31x) B(31x)7T where

Z = diag(diagvect( E(3 2] |xj)>) is the update for the variational parameter.
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FABIA: Variational EM updates

E-step:
B(zlx) = ATY A+ 571 "AT ¥ x; and
E(z 2l Ix) = AT Y PN + Z7Y) 7 + BE(31x) B(31x)7T where

Z = diag(diagvect( E(3 2] |xj)>) is the update for the variational parameter.

M-step:

Lyt B x)T — & Wsign(A)

ARew _ ] j=1 ;
FYBE 1)
yrew . WBEM d'1ag(diagvect(E v sign(A]()\"ew)T)) ,  where
I
1
wEM  —  djag d1agvect< lexj A“ew7z (25 1xj) x; ))

« controls the degree of sparseness (parameter of the Laplacian prior)
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Biclustering of copy number variants
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Biclustering of bioassays and compounds

Matrix plot (dim 270,000 x 4,000) Bioassay data details

@ Data source:
ChEMBL

@ # of assays: ca.
4,000

@ # of compounds:
ca. 270,000

@ Sparseness: ca.
1:2,000
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Biclustering of bioassays and compounds

Matrix plot - close up Bioassay data details

e Data source:
ChEMBL

@ # of assays: ca.
4,000

@ # of compounds:
ca. 270,000

@ Sparseness: ca.
1:2,000
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Biclustering of bioassays and compounds

Compounds



Biclustering

Compounds of the bioassay bicluster

2
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Biclustering of fingerprints and compounds

Matrix plot (dim 16e+6 x le+6) Bioassay data details
@ Data source:
ChEMBL
@ # of fingerprints:
ca. 16,000,000

@ # of compounds:
ca. 1,000,000

@ Sparseness: ca.
1:150,000
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Bicluster of fingerprints and compounds |
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Bicluster of fingerprints and compounds |
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Compounds of the fingerprint bicluster
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Compounds of the fingerprint bicluster

@ All compounds of this bicluster show kinase bioactivity
(urokinase-type plasminogen activator)
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Biclustering for recommender systems

Matrix plot (dim many x many) Recommender

@ Data source:
Zalando

@ # of articles: many
@ # of cookies: many

@ Sparseness: ca.
1:20,000
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Deep Learning

@ emerging machine learning technique

o multiple levels of sparse representations = higher levels
representing more abstract concepts

@ Google and facebook now apply deep learning for object recognition,
image and information retrieval

@ Google recently acquired the deep learning start-up DeepMind for
$500M, winning bidding against facebook

o Nature and The New York Times covered deep learning with serveral
articles (two front-page articles)
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Sparsity by Linear-Rectified Units

Histogram of Hidden Activations

) Sigmoid
£ Rely
5
4
z
B
o
=)
2
1
O - 1
00 05 15 20

1.0
Architecture: 784-1024-10. 1k epachs
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Sparsity by Dropout |

Dropout algorithm e randomly set units
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Sparsity by Dropout Il
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Architectine: 764-1024-10, Dropout-Rate: 50%, 1k epochs
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Model: Rectified Factor Network
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Rectified Factor Network: Newton updates

Newton-step:
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MNIST data set

MNIST 28 x 28 pixel
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MNIST

@ Data source:
Yann LeCun

@ # of input pixel:
756

@ # of samples:
70,000

o Classify digits
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Benchmark data

(@) rot, bg-rand, bg-img, bg-img-rot (b) rect, rect-img, convex

Samples form the various image classification problems. (a): harder vari-
ations on the MNIST digit classification problems. (b): artificial binary
classification problems.
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Motivation cn.FARMS Biclustering

Receptive fields

O NS 1

(b) MNIST digits with random image background

BTN A

(d) convex and concave shapes

(c) MNIST digits with random noise background

(e) tall and wide rectangular (f) rectangular images on background images

Various filters learnt from 1024 hidden units RFN on benchmark data set.
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Conclusions

Results

Dataset SVM,; DBN; DBNj SAE;3 SDAEj3 REN

MNIST  soctok-tok  1.40+023  1.21+021 1244022 1.40+023 1.28+0.22 1.27+022 (1)
basic tok2ksok  3.03+015 3942017 3.11x01s  3.46+016 2.84+015 2.66+01s (1)
bg-rand  1ok2ksok  14.58+031 9.80+026 6.73+022 11.28+028  10.30+027 7944024 (3)
bg-img 10k2k-s0k  22.61+037 16.15+032  16.31+03223.00+037  16.68+033  16.52+032 (1)
rect k02k-s0k 2154013 4.71x010  2.60+014 2.41+013 1.99+012  0.63x006 (1)
rect-img  1ok2ksok  24.04+037 23.69+037  22.50+03724.05+037  21.59+036  20.77+036 (1)
convex 1ok2ksok 19.13+034 19.924035  18.634034 18.41 4034 19.06+034  16.41+032 (1)

Test error rate on all considered classification problems is reported together
with a 95% confidence interval.



cn.FARMS i Rectified Factor Networks and Dropout

Predicting Drug-Target Interactions

Target prediction
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AUC - Area under the ROC curve

Data source:
ChemBL

Compounds:
698,425

Targets: 1,230
Descriptors: 43,340
Hidden units: 16,384

Parameters:
422,232,064

Computation:
Nvidia Tesla K40
with 2,880 CUDA
GPU cores
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Conclusion

Sparse coding can reliably identify interesting projection in the data

Sparse coding can be used for biclustering of high-dimensional data

Sparse coding in drug design can help in selecting compounds with
strong on-target effects and thereby helps to impute missing
measurements

@ Rectified linear units in combination with dropout lead to sparse
representations of the data

o Rectified Factor Networks outperform all existing unsupervised deep
learning methds and can be used for various problems
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Open source software

L
"%

joconductor

OPEN SOURCE SOFTWARE FOR BIOINFORMATICS

e FARMS, cn.FARMS and FABIA are publicly available as
Bioconductor R packages

@ Software homepages:

e http://www.bioinf jku.at/software/farms/farms.html
e http://www.bioinf jku.at/software/cnfarms/cnfarms.html
o http://www.bioinf.jku.at/software/fabia/fabia.html


http://www.bioinf.jku.at/software/farms/farms.html
http://www.bioinf.jku.at/software/cnfarms/cnfarms.html
http://www.bioinf.jku.at/software/fabia/fabia.html

