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Objectives

What is a sparse coding?
What are some common sparse coding models and what are their
fields of application?
What is the role of assumptions in the data generation process?
How can domain knowledge be incorporated in order to build an
appropriate model?
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Sparse coding
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The spatial receptive fields of simple cells in mammalian striate cortex have been reasonably well 
described physiologically and can be characterized as being localized, oriented, and ban@ass, 
comparable with the basis functions of wavelet transforms. Previously, we have shown that these 
receptive field properties may be accounted for in terms of a strategy for producing a sparse 
distribution of output activity in response to natural images. Here, in addition to describing this 
work in a more expansive fashion, we examine the neurobiological implications of sparse coding. Of 
particular interest is the case when the code is overcomplete--i .e. ,  when the number of code 
elements is greater than the effective dimensionality of the input space. Because the basis functions 
are non-orthogonal and not linearly independent of each other, sparsifying the code will recruit 
only those basis functions necessary for representing a given input, and so the input-output 
function will deviate from being purely linear. These deviations from linearity provide a potential 
explanation for the weak forms of non-linearity observed in the response properties of cortical 
simple cells, and they further make predictions about the expected interactions among units in 
response to naturalistic stimuli. © 1997 Elsevier Science Ltd 

Coding V1 Gabor-wavelet Natural images 

INTRODUCTION 

The mammalian visual cortex has evolved over millions 
of years to effectively cope with images of the natural 
environment. Given the importance of using resources 
efficiently in the competition for survival, it is reasonable 
to think that the cortex has discovered efficient coding 
strategies for representing natural images. In this paper, 
we explore to what extent theories of efficient coding can 
provide us with insights about cortical image representa- 
tion. 

The notion of efficiency we adopt is based on Barlow's 
principle of redundancy reduction (Barlow, 1961, 1989), 
which states that a useful goal of sensory coding is to 
transform the input in such a manner that reduces the 
redundancy* due to complex statistical dependencies 

*A confusion that often arises from the term "redundancy reduction" is 
that it would seem to contradict the conventional wisdom that the 
brain contains redundant circuitry to deal with noise and physical 
damage.  It is important, however,  to distinguish between the form 
of  redundancy that is present within the raw input stream (which 
reflects structure in the external world), and redundancy that is 
introduced by the nelvous system through schemes such as 
population coding (e.g., as in the motor system). It is the former 
notion of  redundancy that we refer to here. 

tDepar tment  of  Psychology,  Uris Hall, Coruell University, Ithaca, NY 
14853, U.S.A. 
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brnno @ redwood.ucdavis.edu].  

among elements of the input stream. The usefulness of 
redundancy reduction can be understood by considering 
the process of image formation, which occurs by light 
reflecting off of independent entities (i.e., objects) in the 
world and being focussed onto an array of photoreceptors 
in the retina. The activities of the photoreceptors 
themselves do not form a particularly useful signal to 
the organism because the structure present in the world is 
not made explicit, but rather is embedded in the form of 
complex statistical dependencies, or redundancies, 
among photoreceptor activities. A reasonable goal of 
the visual system, then, is to extract these statistical 
dependencies so that images may be explained in terms of 
a collection of independent events. The hope is that such 
a strategy will recover an explicit representation of the 
underlying independent entities that gave rise to the 
image, which would be useful to the survival of the 
organism. 

Atick and colleagues (Atick & Redlich, 1990, 1992; 
Atick, 1992; Dong & Atick, 1995; Dan, Atick, & Reid, 
1996) have achieved considerable success in showing 
how the principle of redundancy reduction may be 
applied toward understanding the response properties of 
retinal ganglion cells in terms of a strategy for 
"whitening", or decorrelating, a set of outputs in response 
to the 1/f amplitude spectrum of natural images. A 
limitation of their approach, however, was that it 
considered only the redundancy due to linear pairwise 
correlations among image pixels. In natural images, 
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Given a large set of input patterns, sparse coding attempt to
automatically find a small number of representative patterns which
reproduce the original input patterns.
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Sparse coding and linear generative models

Some sources ’drive’ the model and produce an output distribution
which should best match the observed data distribution
Observations x are random variables whose distribution depends
on model parameters ✓
Nice advantages of generative models are:

they select models using sound model selection techniques such as
maximum likelihood or maximum a posterior,
signal-to-noise ratios can be computed,
they can be compared with each other via the likelihood or posterior,
they produce a global model to explain all data.
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Some applications

Factor analysis for
quantitative gene expression analysis

Factor Analysis for Robust Microarray Summarization (FARMS)

discovering copy number variations in array data
copy number FARMS (cn.FARMS)

identifying bicluster in a data matrix
Factor Analysis for Bicluster Acquisition (FABIA)
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Microarray
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Facts and assumptions

Gene measured by
different probes
Goal: summarize probe
intensities to an
expression value
Noise-free probes are
correlated
Replicate probe
intensities are Gaussian
distributed
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The probe level data
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FARMS: The idea
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Factor analysis

x = ���z + ✏✏✏ =
pX

i=1

�
i

z

T

i

+ ✏✏✏

linear generative model
x 2 Rn are the observations
z 2 Rp are independent N (0,1) Gaussian factor
✏✏✏ is independent N (0, ) Gaussian noise
x is Gaussian with
P (x) =

R
P (z)P (x | z)dx = N

�
0,������t + 

�

where ��� 2 Rn⇥p is the factor loading matrix,
and the noise covariance matrix  2 Rp⇥p is diagonal
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MA-plot MAS5.0 vs. FA

MAS 5.0 FA

The MA plot shows log fold change as a function of mean log expression level.
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Facts and assumptions II

Gene measured by
different probes
Goal: summarize probe
intensities to an
expression value
Noise-free probes are
positively correlated

Variable probe
qualities
High quality probes
are linear dependent

Replicate probe
intensities are Gaussian
distributed
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FARMS: Bayes framework

Posterior

p(���,   | {x}) µ p({x} | ���,   ) p(���)
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FARMS: EM updates
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MA-plot FA vs. FARMS

FA FARMS

The MA plot shows log fold change as a function of mean log expression level.
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FARMS: Filtering by signal variance
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FARMS: z-posterior

Variance of z | x

Model

x = ��� z + ✏✏✏

and Gaussian z-prior N (0,1) results in the z-posterior p(z | x):
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FARMS: The I/NI call

The variance of z is decomposed into a signal and a noise part:
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z|x is called the "Informative/NonInformative (I/NI) call" and is one

minus the signal variance. We see that large ��� (going with low noise    )
leads to low variance of z | x which means a precise conditional z .
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FARMS: Independent I/NI calls filtering

Independent filtering increases detection
power for high-throughput experiments
Richard Bourgona, Robert Gentlemanb, and Wolfgang Huberc,1

aEuropean Bioinformatics Institute, Cambridge CB10 1SD, United Kingdom; bGenentech, Inc., 1 DNA Way, South San Francisco, CA 94080-4990; and
cEuropean Molecular Biology Laboratory, 69117 Heidelberg, Germany

Edited by Stephen E. Fienberg, Carnegie Mellon University, Pittsburgh, PA, and approved March 22, 2010 (received for review December 3, 2009)

With high-dimensional data, variable-by-variable statistical testing
is often used to select variables whose behavior differs across con-
ditions. Such an approach requires adjustment for multiple testing,
which can result in low statistical power. A two-stage approach
that first filters variables by a criterion independent of the test
statistic, and then only tests variables which pass the filter, can
provide higher power. We show that use of some filter/test statis-
tics pairs presented in the literature may, however, lead to loss of
type I error control. We describe other pairs which avoid this
problem. In an application to microarray data, we found that
gene-by-gene filtering by overall variance followed by a t-test
increased the number of discoveries by 50%. We also show that
this particular statistic pair induces a lower bound on fold-change
among the set of discoveries. Independent filtering—using filter/
test pairs that are independent under the null hypothesis but
correlated under the alternative—is a general approach that can
substantially increase the efficiency of experiments.

gene expression ∣ multiple testing

In many experimental contexts which generate high-dimensional
data, variable-by-variable statistical testing is used to select vari-

ables whose behavior differs across the set of studied conditions.
Each variable is associated with a null hypothesis which asserts
that behavior for that variable does not differ across conditions.
A null hypothesis is rejected when observed data, summarized
into a per-variable p-value, are deemed to be inconsistent with
the hypothesis. In biology, for example, microarrays or high-
throughput sequencing may be used to identify genes (variables)
whose expression level shows systematic covariation with a treat-
ment or phenotype of interest. The evidence for such covariation
is assessed by applying a statistical test to each gene separately. In
the case of microarrays, gene-by-gene t-tests are frequently used
for two-class comparisons. This approach can be generalized to
more complex experimental designs through the use of ANOVA
(1); it has also been refined for experiments with small sample
sizes by the introduction of moderated variance estimators (2),
as in the SAM (3) and limma (4) software. When transcript
abundance is measured by high-throughput sequencing rather
than microarrays, gene-level p-values may instead be computed
on the basis of gene-level read count statistics (5).

Because a large number of hypothesis tests are performed in
such variable-by-variable analyses, many true-null hypotheses
will produce small p-values by chance. As a consequence, numer-
ous false positives, or type I errors, will result if p-values are
compared to standard single-test thresholds. There are well-
established procedures which address the multiple testing pro-
blem by adjusting the p-values to control various experiment-wide
false positive measures, e.g., the family-wise error rate (FWER)
or the false discovery rate (FDR). (See ref. 6 for a review).

Multiple testing adjustment provides control over the extent to
which false positives occur, but such control comes at the cost of
reduced power to detect true positives. Further, this power reduc-
tion worsens as more hypotheses are tested. Typically, the number
of genes represented on a microarray is in the tens of thousands,
while the number of differentially expressed genes may be only a

few dozen or hundred. As a consequence, the power of an experi-
ment to detect a given differentially expressed gene could poten-
tially be quite low.

In the microarray literature, several authors have suggested
filtering to reduce the impact that multiple testing adjustment
has on detection power (7–12). Conceptually similar screening
approaches have also been proposed for variable selection in
high-dimensional regression models (13, 14). In filtering for
microarray applications, the data are first used to identify and
remove a set of genes which seem to generate uninformative
signal. Second, formal statistical testing is applied only to genes
which pass the filter. An effective filter will enrich for true differ-
ential expression while simultaneously reducing the number of
hypotheses tested at stage two—making multiple testing adjust-
ment less severe. Such filtering is further motivated by the obser-
vation that the set of genes which are not differentially expressed
can be partitioned into two groups: (i) genes that are not ex-
pressed in any of the conditions of the experiment or whose
reporters on the array lack sensitivity to detect their expression;
and (ii) genes that are expressed and detectable, but not differ-
entially expressed across conditions.

This two-stage approach, the use of which need not be re-
stricted to gene expression applications, assesses each variable
on the basis of both a filter statistic (UI) and a test statistic
(UII). Both statistics are required to exceed their respective cut-
offs. Note, however, that the two-stage approach is not equivalent
to standard hypothesis testing based on the joint distribution of
the filter and test statistics: the latter uses a joint null distribution
to compute type I error rate, while the former only considers the
null distribution of the stage-two test statistic.

Some authors specifically recommend using nonspecific or
unsupervised filters which do not make use of sample class labels,
and they suggest that nonspecific filtering will not interfere with
formal statistical testing (7, 9). Nonspecific filter statistics
include, for example, the overall variance and overall mean—
computed across all arrays, ignoring class label. Some Affymetrix
arrays permit Present/Absent calls for each gene; requiring a
minimum fraction of Present calls across all arrays also yields
a nonspecific filter (15).

While filtering has the potential to substantially increase the
number of discoveries (Fig. 1), its validity has been debated.
One criticism is that data-based filtering constitutes a statistical
test. Ignoring this fact, and computing and adjusting the remain-
ing p-values as if filtering had not taken place, may result in overly
optimistic adjusted p-values and a true false positive rate which is
larger than reported. Clearly, increasing the number of discov-
eries only implies an increase in statistical power if the additional
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W.H. analyzed data and wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Freely available online through the PNAS open access option.
1To whom correspondence should be addressed. E-mail: whuber@embl.de.

This article contains supporting information online at www.pnas.org/lookup/suppl/
doi:10.1073/pnas.0914005107/-/DCSupplemental.

9546–9551 ∣ PNAS ∣ May 25, 2010 ∣ vol. 107 ∣ no. 21 www.pnas.org/cgi/doi/10.1073/pnas.0914005107

For permutation invariant test statistics and for the t-test statistic T

(only for Gaussian z-prior), the I/NI call filter applied to null
hypotheses is independent of the statistic
This guarantees type I error rate control if first filtering by I/NI calls,
then using these statistics, and finally applying correction for
multiple testing.
http://www.bioinf.jku.at/software/cnfarms/proof_ini.pdf

http://www.bioinf.jku.at/software/cnfarms/proof_ini.pdf
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FARMS: I/NI calls distribution
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A pipeline for gene expression analysis
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Receiver Operator Characteristics (ROC)

Affycomp II / GoldenSpike Benchmark (AUC - area under the curve):
Intensity FARMS RMA GCRMA MAS 5.0 MBEI

HGU133

Low 0.94 0.51 0.62 0.07 0.21

HGU133
Med 0.99 0.91 0.94 0.00 0.43HGU133 High 1.00 0.64 0.59 0.00 0.16

HGU133

Mean 0.95 0.60 0.69 0.05 0.26

HGU95

Low 0.91 0.57 0.45 0.09 -

HGU95
Med 1.00 0.91 0.91 0.00 -HGU95 High 0.98 0.96 0.92 0.00 -

HGU95

Mean 0.93 0.65 0.57 0.06 -
GoldenSpike 0.85 0.76 0.78 0.28 0.39

Computational costs for processing 60 arrays
FARMS RMA MAS 5.0 MBEI

Computational time [s] 92 384 851 591



Motivation FARMS cn.FARMS Biclustering Rectified Factor Networks and Dropout Conclusions

Results I/NI call

Leads on average to 84 (±1.5)% exclusion rate
Applied on 30 real life studies
A/P calls excluded only 33 (±1)%

Validation was carried out on spiked-in data:

Exclusion rate on spiked-in data sets:
Informative Non-informative Exclusion rate Detected 

Spiked-ins
Detected 

Pseudo Spiked-ins

HGU133A 81 22219 99.63% 42/42 28/28*

HGU95_V2 56 12570 99.56% 14/14 5/5**

Hu. Gene 1.0 ST 40 19,753 99.80% 15/15*** -

*McGee et al. 2006; **Wolfinger and Chu 2002; Cope et al. 2004; ***long spiked-in fragments
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Copy number variants

A B B B B C

A B CDDeletion Insertion

Inversion

Copy number
variation

Segmental
duplication

A CB

A B C

Chromosome

A B C

Normal

A C

C AB

are deletions, duplications, inversions or inserations of chromosomal
segments
are a major source of variation between individual humans
are an underlying factor in human evolution and in many diseases
form at a faster rate than other types of mutation
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Rare CNV events

Sparse data

CNV data is sparse with an kurtosis larger than 30 ! change the model
assumption to a Laplacian distributed hidden variable z .

Gauss vs. Laplace

Laplace

Gaussian

Close up Gauss vs. Laplace
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Laplacian cn.FARMS

Data likelihood

p ({x} | ���,   ) =

Z
p ({x} | z ,���,   ) p (z) dz

Problem

The likelihood is analytically intractable for the non-Gaussian
prior

Solution

Variational EM approach
Based on a local Gaussian approximation to the mode
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Laplacian cn.FARMS

Data likelihood
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Solution
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Laplacian cn.FARMS

Data likelihood

p ({x} | ���,   ) =

Z
p ({x} | z ,���,   ) p (z) dz

Problem

The likelihood is analytically intractable for the non-Gaussian
prior

Solution

Variational EM approach
Based on a local Gaussian approximation to the mode



Motivation FARMS cn.FARMS Biclustering Rectified Factor Networks and Dropout Conclusions

Benchmark data sets

30 male and 30 female CEU founders
Classification task: distinguish males from females by their copy
number on the X chromosome

Evaluation on:
Single-locus / multi-loci classification (window mode)
Multi-loci summarization with

cn.FARMS
Median locus for dChip and CRMA_v2
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ROC-Curve (SNP 6.0 arrays)

single-locus multi-loci, 3 markers

TPR / FPR

True positive rate (TPR) = TP/(TP+FN)
False positive rate (FPR) = FP/(FP+TN)
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Results cn.FARMS

Affymetrix Mapping250K_NSPAffymetrix Mapping250K_NSPAffymetrix Mapping250K_NSP Affymetrix SNP 6.0Affymetrix SNP 6.0Affymetrix SNP 6.0

Loci Criteria cn.FARMS CRMA_v2 dChip cn.FARMS CRMA_v2 dChip

AUC 0.9852 0.9820 0.9819 0.9838 0.9807 0.9721

1 FP 8472 9106 9018 56145 68593 77438

p-value – 1.8e-65 3.1e-26 – 1e-1160 1e-6049

AUC 0.9983 0.9974 0.9969 0.9983 0.9963 0.9894

2 FP 1375 1449 1611 9777 11705 18039

p-value – 2.7e-4 2.5e-12 – 1e-317 1e-3713

AUC 0.9998 0.9995 0.9992 0.9998 0.9990 0.9953

3 FP 240 366 440 1573 3462 6625

p-value – 2.6e-38 7.2e-58 – 1e-896 1e-3455

AUC 1.000 0.9999 0.9998 0.9999 0.9995 0.9976

4 FP 49 95 153 366 1338 2985

p-value – 2.8e-10 1.9e-48 – 1e-594 1e-2013

Table : AUC values at the sex classification task for 59 HapMap CEU founders
based on the X chromosome copy numbers:



Motivation FARMS cn.FARMS Biclustering Rectified Factor Networks and Dropout Conclusions

CNV detection benchmark

“The International HapMap Project” phase 2 data set with
Affymetrix SNP 6.0 arrays

Goal is to identify true rare CNV regions with a low FDR
“True CNV regions” are those regions which were detected and
verified by different bio-technologies

NimbleGen tiling arrays, Agilent CGH arrays, Illumina Infinium
genotyping (Human660W)

2,515 true CNV regions as reference

CNV calling criteria:
I/NI call for cn.FARMS
Variance of the raw copy numbers on the samples for dChip and
CRMA_v2
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CNV detection plot
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CNV detection on HapMap (multi-loci 3)

Chromosome 8 Whole genome

Precision / Recall

Recall = TP/(TP+FN)
Precision = TP/(TP+FP) = 1 - FDR
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CNV detection on HapMap (multi-loci 5)

Chromosome 8 Whole genome

Precision / Recall

Recall = TP/(TP+FN)
Precision = TP/(TP+FP) = 1 - FDR
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ICGC copy number data sets

Glioblastoma multiforme data sets
167 Agilent 415K CGH arrays from Harvard
262 Agilent 244A CGH arrays from Harvard
461 Agilent 244A CGH arrays from MSKCC
533 Affymetrix SNP 6.0 arrays from Broad
432 Illumina HumanHap 550 from Stanford

CN data for SNP 6.0 and HumanHap 550 were not available
167 matched arrays HMS 415K and MSKCC 244A remain
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Merged raw data (Chromosome 1)
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Prior weight 2.0
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Biclustering applications

Definition: Biclustering simultaneously organizes a data matrix into
subsets of rows and columns in which the entities of each row subset are
similar to each other on the column subset and vice versa.

Gene expression ) columns tissues, rows genes
compounds that trigger the same pathway
tightly co-expressed gene sets in subgroups of cancer, e.g. patients
with bad treatment outcome

Bioassays ) columns compounds, rows bioassay activity
compounds that are active on similar targets

Structural fingerprints ) columns compounds, rows chemical
fingerprints

compounds that share a chemical substructure
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Biclustering: The idea
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FABIA: The model I

noise ✏

z2

x1 x2 x3 x4

z1

�42

�22

✏2 ✏3 ✏4✏1

factor z

observations x

loading matrix �
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FABIA: The model II

x = ���z + ✏✏✏ =
pX

i=1

�
i

z

T

i

+ ✏✏✏

x are the observations
��� is the matrix of factor loadings
z = (z1, . . . ,zp

)T is the factor matrix
p number of biclusters
�

i

2 Rn is the sparse prototype vector of the i-th bicluster
z

i

2 Rl is the sparse vector of factors of the i-th bicluster
✏ 2 Rn⇥l is independent additive noise N (0,   )-distributed
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FABIA: Bayes framework

Loading prior

Sparseness on the loadings
Laplace prior

p(���
i

) =
⇣

1p
2

⌘
nQ

n

j=1 e

-
p

2|�ji |

Factor prior

Sparseness on the factor
Laplace prior

p(z) =
⇣

1p
2

⌘
pQ

p

i=1 e

-
p

2|zi |

Problem

Laplace prior on factors leads to intractable likelihood:

p (x | ���,   ) =
R

p (x | z ,���,   ) p (z) dz

Solution: Prior on factors is replaced by maximum of a Gaussian function
family ) variational approach

p (z) ⇡ argmax
⇠

p(z |⇠)
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FABIA: Variational EM updates

E-step:
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↵ controls the degree of sparseness (parameter of the Laplacian prior)
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Biclustering of copy number variants I
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Biclustering of copy number variants II
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Biclustering of bioassays and compounds

Matrix plot (dim 270,000 x 4,000)

Bioassay data details

Data source:
ChEMBL
# of assays: ca.
4,000
# of compounds:
ca. 270,000
Sparseness: ca.
1:2,000
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Biclustering of bioassays and compounds

Matrix plot - close up Bioassay data details

Data source:
ChEMBL
# of assays: ca.
4,000
# of compounds:
ca. 270,000
Sparseness: ca.
1:2,000
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Biclustering of bioassays and compounds

Compounds

A
ss
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Compounds of the bioassay bicluster
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Biclustering of fingerprints and compounds

Matrix plot (dim 16e+6 x 1e+6)

Bioassay data details

Data source:
ChEMBL
# of fingerprints:
ca. 16,000,000
# of compounds:
ca. 1,000,000
Sparseness: ca.
1:150,000
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Bicluster of fingerprints and compounds I

Compounds
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Bicluster of fingerprints and compounds I
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Compounds of the fingerprint bicluster



Motivation FARMS cn.FARMS Biclustering Rectified Factor Networks and Dropout Conclusions

Compounds of the fingerprint bicluster

All compounds of this bicluster show kinase bioactivity
(urokinase-type plasminogen activator)
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Biclustering for recommender systems

Matrix plot (dim many x many)

Recommender

Data source:
Zalando
# of articles: many
# of cookies: many
Sparseness: ca.
1:20,000
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Overview 12 random selected bicluster



Motivation FARMS cn.FARMS Biclustering Rectified Factor Networks and Dropout Conclusions

Top 36 articles of a bicluster



Motivation FARMS cn.FARMS Biclustering Rectified Factor Networks and Dropout Conclusions

Deep Learning

emerging machine learning technique
multiple levels of sparse representations ) higher levels
representing more abstract concepts
Google and facebook now apply deep learning for object recognition,
image and information retrieval
Google recently acquired the deep learning start-up DeepMind for
$500M, winning bidding against facebook
Nature and The New York Times covered deep learning with serveral
articles (two front-page articles)
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Networks

factors



Motivation FARMS cn.FARMS Biclustering Rectified Factor Networks and Dropout Conclusions

Sparsity by Linear-Rectified Units
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Sparsity by Dropout I

Dropout algorithm randomly set units
to zero acitvation
no derivatives



Motivation FARMS cn.FARMS Biclustering Rectified Factor Networks and Dropout Conclusions

Sparsity by Dropout II
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Model: Rectified Factor Network

✏2✏1

w22

w11

v1 v2

h1 h3h2 h4
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Rectified Factor Network: Newton updates

Newton-step:
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MNIST data set

MNIST 28 x 28 pixel

MNIST

Data source:
Yann LeCun
# of input pixel:
756
# of samples:
70,000
Classify digits
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Benchmark data

VINCENT, LAROCHELLE, LAJOIE, BENGIO AND MANZAGOL

(a) rot, bg-rand, bg-img, bg-img-rot (b) rect, rect-img, convex

Figure 9: Samples form the various image classification problems. (a): harder variations on the
MNIST digit classification problems. (b): artificial binary classification problems.

On the 28⇥28 gray-scale image problems, SAE and SDAE used linear+sigmoid decoder layers
and were trained using a cross-entropy loss, due to this being a natural choice for this kind of (near)
binary images, as well as being functionally closer to RBM pretraining we wanted to compare
against.

However for training the first layer on the tzanetakis problem, that is, for reconstructing MPC
coefficients, a linear decoder and a squared reconstruction cost were deemed more appropriate (sub-
sequent layers used sigmoid cross entropy as before). Similarly the first layer RBM used in pre-
training a DBN on tzanetakis was defined with a Gaussian visible layer.

Table 2 lists the hyperparameters that had to be tuned by proper model selection (based on
validation set performance). Note that to reduce the choice space, we restricted ourselves to the
same number of hidden units, the same noise level, and the same learning rate for all hidden layers.

6.2 Empirical Comparison of Deep Network Training Strategies

Table 3 reports the classification performance obtained on all data sets using a 3 hidden layer neural
network pretrained with the three different strategies: by stacking denoising autoencoders (SDAE-
3), stacking restricted Boltzmann machines (DBN-3), and stacking regular autoencoders (SAE-3).
For reference the table also contains the performance obtained by a single hidden-layer DBN-1 and
by a Support Vector Machine with a RBF kernel (SVMrbf).12

12. SVMs were trained using the libsvm implementation. Their hyperparameters (C and kernel width) were tuned semi-
automatically (i.e., by human guided grid-search), searching for the best performer on the validation set.

3392

Samples form the various image classification problems. (a): harder vari-
ations on the MNIST digit classification problems. (b): artificial binary
classification problems.
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Receptive fields

(a) MNIST digits (b) MNIST digits with random image background

(c) MNIST digits with random noise background (d) convex and concave shapes

(e) tall and wide rectangular (f) rectangular images on background images

Figure 2: Various filters learnt from 1024 hidden units RFN on benchmark data set. The panels
(a)-(c) show filters for NMIST variations, while (d) and (e)-(f) show filters for convex and rectangle,
respectively. RFN learnt various kinds of filters, such as stroke, local and global blob detectors. As
in panel (c) can be seen, are the RFN filters unaffected by the background noise.

Table 1: Comparison of deep networks pretrained with RFNs and other models. Test error rate on all
considered classification problems is reported together with a 95% confidence interval. The result of
the best performing method is given in bold, as well as those for which confidence intervals overlap.
The first column gives the data set, the second the size of training, validation and test set, the last
column indicates the number of hidden layers of the RFN pretrained deep network which is chosen
according to the validation set performance. In only one case RFN pretraining was significantly
worse than the best method but still the second best method. In four out of the seven methods RFN
pretraining performed best, where in three cases it was significantly better than all other methods.

Dataset SVMrbf DBN1 DBN3 SAE3 SDAE3 RFN
MNIST 50k-10k-10k 1.40±0.23 1.21±0.21 1.24±0.22 1.40±0.23 1.28±0.22 1.27±0.22 (1)
basic 10k-2k-50k 3.03±0.15 3.94±0.17 3.11±0.15 3.46±0.16 2.84±0.15 2.66±0.14 (1)
bg-rand 10k-2k-50k 14.58±0.31 9.80±0.26 6.73±0.22 11.28±0.28 10.30±0.27 7.94±0.24 (3)
bg-img 10k-2k-50k 22.61±0.37 16.15±0.32 16.31±0.32 23.00±0.37 16.68±0.33 16.52±0.32 (1)
rect 1k-0.2k-50k 2.15±0.13 4.71±0.19 2.60±0.14 2.41±0.13 1.99±0.12 0.63±0.06 (1)
rect-img 10k-2k-50k 24.04±0.37 23.69±0.37 22.50±0.37 24.05±0.37 21.59±0.36 20.77±0.36 (1)
convex 10k-2k-50k 19.13±0.34 19.92±0.35 18.63±0.34 18.41±0.34 19.06±0.34 16.41±0.32 (1)

5 Conclusion

We have introduced rectified factor networks (RFNs) for pretraining deep networks. RFNs produce
sparse and non-linear input representations of the data on different levels and extract factors under-
lying the data. RFNs are tailored to pretraining of deep networks and to many hidden units. We
showed that RFN learning is a variational EM algorithm with unknown prior and that the fixed point
of RFN training explains the data variance like factor analysis.

On seven different benchmark datasets we compare deep networks with RFN pretraining with sup-
port vector machines and deep networks pretrained with regular / denoising autoencoders and re-
stricted Boltzmann machines. Only on one dataset RFN pretraining was significantly worse than the
best performing method. On four datasets RFNs pretraining outperformed all other methods — in
three cases significantly.

RFNs are an interesting alternative to RBMs and autoencoders in the context of deep learning. RFNs
have high potential as unsupervised methods for semi-supervised learning and producing sparse
codes as they are geared to large datasets and many representational units.

References
[1] P. Baldi and P. Sadowski. The dropout learning algorithm. Artificial Intelligence, 210C:78–122, 2014.

7

Various filters learnt from 1024 hidden units RFN on benchmark data set.
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Results
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(a) MNIST digits (b) MNIST digits with random image background

(c) MNIST digits with random noise background (d) convex and concave shapes

(e) tall and wide rectangular (f) rectangular images on background images

Figure 2: Various filters learnt from 1024 hidden units RFN on benchmark data set. The panels
(a)-(c) show filters for NMIST variations, while (d) and (e)-(f) show filters for convex and rectangle,
respectively. RFN learnt various kinds of filters, such as stroke, local and global blob detectors. As
in panel (c) can be seen, are the RFN filters unaffected by the background noise.

Since we maximize the bound, we have to ensure that the Hessian is negative definite, that is,
[H�]ii < 0 or �ii < 2 ci. Therefore we replace ci by �ii and get [H�]ii = �1/�2

ii. The
Newton update direction is:

��ii = �
[�� logL]ii

[H�]ii
= ci � �ii . (20)

This is the EM update for learning rate equal to 1.

4 Experiments

In this section, we assess the performance of rectified factor networks (RFNs) as a pretraining pro-
cedure to construct deep networks. We stacked RFNs in the same way as described by Vincent et
al.[30], namely first training a single layer RFN and then passing the resulting representation as
input for training the next RFN.

We conducted experiments with two deep network architectures constructed from pretrained RFNs:
a 1-hidden layer network (RFN-1) and a 3-hidden layer network. The classification performance
of the RFN pretrained deep networks was compared to (i) support vector machines with Gaussian

Table 1: Comparison of deep networks pretrained with RFNs and other models. Test error rate on all
considered classification problems is reported together with a 95% confidence interval. The result of
the best performing method is given in bold, as well as those for which confidence intervals overlap.
The first column gives the data set, the second the size of training, validation and test set, the last
column indicates the number of hidden layers of the RFN pretrained deep network which is chosen
according to the validation set performance. In only one case RFN pretraining was significantly
worse than the best method but still the second best method. In four out of the seven methods RFN
pretraining performed best, where in three cases it was significantly better than all other methods.

Dataset SVMrbf DBN1 DBN3 SAE3 SDAE3 RFN
MNIST 50k-10k-10k 1.40±0.23 1.21±0.21 1.24±0.22 1.40±0.23 1.28±0.22 1.27±0.22 (1)
basic 10k-2k-50k 3.03±0.15 3.94±0.17 3.11±0.15 3.46±0.16 2.84±0.15 2.66±0.14 (1)
bg-rand 10k-2k-50k 14.58±0.31 9.80±0.26 6.73±0.22 11.28±0.28 10.30±0.27 7.94±0.24 (3)
bg-img 10k-2k-50k 22.61±0.37 16.15±0.32 16.31±0.32 23.00±0.37 16.68±0.33 16.52±0.32 (1)
rect 1k-0.2k-50k 2.15±0.13 4.71±0.19 2.60±0.14 2.41±0.13 1.99±0.12 0.63±0.06 (1)
rect-img 10k-2k-50k 24.04±0.37 23.69±0.37 22.50±0.37 24.05±0.37 21.59±0.36 20.77±0.36 (1)
convex 10k-2k-50k 19.13±0.34 19.92±0.35 18.63±0.34 18.41±0.34 19.06±0.34 16.41±0.32 (1)

6Test error rate on all considered classification problems is reported together
with a 95% confidence interval.
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Predicting Drug-Target Interactions

Target prediction

AUC - Area under the ROC curve

Data source:
ChemBL
Compounds:
698,425
Targets: 1,230
Descriptors: 43,340
Hidden units: 16,384
Parameters:
422,232,064
Computation:
Nvidia Tesla K40
with 2,880 CUDA
GPU cores
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Conclusion

Sparse coding can reliably identify interesting projection in the data
Sparse coding can be used for biclustering of high-dimensional data
Sparse coding in drug design can help in selecting compounds with
strong on-target effects and thereby helps to impute missing
measurements
Rectified linear units in combination with dropout lead to sparse
representations of the data
Rectified Factor Networks outperform all existing unsupervised deep
learning methds and can be used for various problems
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Open source software

FARMS, cn.FARMS and FABIA are publicly available as
Bioconductor R packages
Software homepages:

http://www.bioinf.jku.at/software/farms/farms.html
http://www.bioinf.jku.at/software/cnfarms/cnfarms.html
http://www.bioinf.jku.at/software/fabia/fabia.html

http://www.bioinf.jku.at/software/farms/farms.html
http://www.bioinf.jku.at/software/cnfarms/cnfarms.html
http://www.bioinf.jku.at/software/fabia/fabia.html

